论文标题
缩小协方差矩阵的M-估计值的特征值
Shrinking the eigenvalues of M-estimators of covariance matrix
论文作者
论文摘要
一个非常受欢迎的正规化(收缩)协方差矩阵估计器是收缩样品协方差矩阵(SCM),该矩阵(SCM)具有与SCM相同的特征向量相同的集合,但将其特征值缩小到SCM的特征值的大平均值。在本文中,考虑了一种更通用的方法,其中SCM被散点矩阵的M估计器和一种全自动数据自适应方法替换,以计算最佳的收缩参数,并提出了最小平均误差的最佳收缩参数。我们的方法允许使用任何重量功能,例如高斯,胡伯的,泰勒或T重量功能,所有这些功能都常用于M估计框架中。我们的仿真示例说明,基于提出的最佳调整与强大的重量函数结合的收缩M估计器在数据为高斯时的性能不会松散,而在数据为高斯时收缩SCM估计器,但是当从未指定的椭圆形的对称性对称性分布中,数据得到显着改善的性能。此外,现实世界和合成股票市场数据验证了在实际应用中提出的方法的性能。
A highly popular regularized (shrinkage) covariance matrix estimator is the shrinkage sample covariance matrix (SCM) which shares the same set of eigenvectors as the SCM but shrinks its eigenvalues toward the grand mean of the eigenvalues of the SCM. In this paper, a more general approach is considered in which the SCM is replaced by an M-estimator of scatter matrix and a fully automatic data adaptive method to compute the optimal shrinkage parameter with minimum mean squared error is proposed. Our approach permits the use of any weight function such as Gaussian, Huber's, Tyler's, or t-weight functions, all of which are commonly used in M-estimation framework. Our simulation examples illustrate that shrinkage M-estimators based on the proposed optimal tuning combined with robust weight function do not loose in performance to shrinkage SCM estimator when the data is Gaussian, but provide significantly improved performance when the data is sampled from an unspecified heavy-tailed elliptically symmetric distribution. Also, real-world and synthetic stock market data validate the performance of the proposed method in practical applications.