论文标题
基准和后抽样
Fiducial and Posterior Sampling
论文作者
论文摘要
基金会与配备合适HAAR先验的组模型中的后部相吻合。此结果在这里被广泛化。为此,Kolmogorov的基本概率空间被$σ$ - 最佳的测量空间取代,并且在此框架内提出了基准理论。列出了示例,证明这也为现有的贝叶斯采样方法提供了很好的替代方法。事实证明,基准模型提供的结果表明,对组的不变措施的理论不能直接推广到循环:存在一个平稳的一维循环,其中不存在不变的度量。 关键字:有条件的抽样,不正确的先验,haar先验,足够的统计量,准集团
The fiducial coincides with the posterior in a group model equipped with the right Haar prior. This result is here generalized. For this the underlying probability space of Kolmogorov is replaced by a $σ$-finite measure space and fiducial theory is presented within this frame. Examples are presented that demonstrate that this also gives good alternatives to existing Bayesian sampling methods. It is proved that the results provided here for fiducial models imply that the theory of invariant measures for groups cannot be generalized directly to loops: There exist a smooth one-dimensional loop where an invariant measure does not exist. Keywords: Conditional sampling, Improper prior, Haar prior, Sufficient statistic, Quasi-group