论文标题
在经过认证的小型扩张器上玩独特的游戏
Playing Unique Games on Certified Small-Set Expanders
论文作者
论文摘要
我们提供了一种算法,用于求解独特的游戏(UG)实例,只要低度平价证明证明了通过超合同不平等的基础约束图的小型扩展范围的良好界限。实际上,我们的算法实际上更具用途,即使约束图不是一个小型扩展器,只要非扩展小型集的结构是(非正式地说)“以低度的规定证明”的“表征”。我们的结果是通过将\ emph {低渗透性}解决方案(通过新的全球潜在函数测量)到达平方(SOS)半决赛程序来获得的。该技术增加了(当前简短的)通用工具列表,用于分析\ emph {worst-case}优化问题的SOS松弛。 作为推论,我们获得了第一个用于求解任何UG实例的多项式时间算法,其中约束图是\ emph {noisy hypercube},\ emph {short code}或\ emph {johnson}图。此类实例的先前最佳算法是Arora,Barak和Steurer(2010)的特征值枚举算法,该算法需要用于嘈杂的HyperCube的准多项式时间和短期和Johnson图。我们所有的结果都达到了$1-ε$ vs $δ$的近似值,其中$ε> 0 $和$δ> 0 $取决于图的扩展参数,但与字母大小无关。
We give an algorithm for solving unique games (UG) instances whenever low-degree sum-of-squares proofs certify good bounds on the small-set-expansion of the underlying constraint graph via a hypercontractive inequality. Our algorithm is in fact more versatile, and succeeds even when the constraint graph is not a small-set expander as long as the structure of non-expanding small sets is (informally speaking) "characterized" by a low-degree sum-of-squares proof. Our results are obtained by rounding \emph{low-entropy} solutions -- measured via a new global potential function -- to sum-of-squares (SoS) semidefinite programs. This technique adds to the (currently short) list of general tools for analyzing SoS relaxations for \emph{worst-case} optimization problems. As corollaries, we obtain the first polynomial-time algorithms for solving any UG instance where the constraint graph is either the \emph{noisy hypercube}, the \emph{short code} or the \emph{Johnson} graph. The prior best algorithm for such instances was the eigenvalue enumeration algorithm of Arora, Barak, and Steurer (2010) which requires quasi-polynomial time for the noisy hypercube and nearly-exponential time for the short code and Johnson graphs. All of our results achieve an approximation of $1-ε$ vs $δ$ for UG instances, where $ε>0$ and $δ> 0$ depend on the expansion parameters of the graph but are independent of the alphabet size.