论文标题

Stad:通行的旅行时间估算的时空调整

STAD: Spatio-Temporal Adjustment of Traffic-Oblivious Travel-Time Estimation

论文作者

Abbar, Sofiane, Stanojevic, Rade, Mokbel, Mohamed

论文摘要

旅行时间估计是现代运输应用中的重要组成部分。旅行时间估计的最新技术使用GPS痕迹来学习道路网络的权重,通常以有向图建模,然后应用类似Dijkstra的算法以找到最短的路径。然后将旅行时间计算为返回路径上边缘权重的总和。为了启用时间依赖性,现有系统计算与不同时间窗口相对应的多个加权图。这些图通常在将它们部署到生产路由引擎中之前经常优化离线,从而导致严重的工程开销。在本文中,我们介绍了Stad,该系统可以随时调整以原点,目的地和出发时间的形式表达的任何旅行请求的旅行时间估算。 Stad使用机器学习和稀疏旅行数据来学习任何基本路由引擎的缺陷,然后才能将其变成一个成熟的时间依赖性系统,能够将旅行时间调整为城市的实际交通状况。 Stad通过将诸如离开和目的地地理区域的空间特征与时间特征(例如离开时间和日期)相结合,以显着改善基本路由引擎的旅行时间估算,从而利用了流量的时空特性。来自多哈,纽约市和波尔图的真实旅行数据集的实验显示,前两个城市的中值绝对错误减少了14%,而后者的绝对错误则减少了29%。我们还表明,Stad在所有三个城市中的表现都比不同的商业和研究基线更好。

Travel time estimation is an important component in modern transportation applications. The state of the art techniques for travel time estimation use GPS traces to learn the weights of a road network, often modeled as a directed graph, then apply Dijkstra-like algorithms to find shortest paths. Travel time is then computed as the sum of edge weights on the returned path. In order to enable time-dependency, existing systems compute multiple weighted graphs corresponding to different time windows. These graphs are often optimized offline before they are deployed into production routing engines, causing a serious engineering overhead. In this paper, we present STAD, a system that adjusts - on the fly - travel time estimates for any trip request expressed in the form of origin, destination, and departure time. STAD uses machine learning and sparse trips data to learn the imperfections of any basic routing engine, before it turns it into a full-fledged time-dependent system capable of adjusting travel times to real traffic conditions in a city. STAD leverages the spatio-temporal properties of traffic by combining spatial features such as departing and destination geographic zones with temporal features such as departing time and day to significantly improve the travel time estimates of the basic routing engine. Experiments on real trip datasets from Doha, New York City, and Porto show a reduction in median absolute errors of 14% in the first two cities and 29% in the latter. We also show that STAD performs better than different commercial and research baselines in all three cities.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源