论文标题

用深神经网络分期癫痫发生

Staging Epileptogenesis with Deep Neural Networks

论文作者

Lu, Diyuan, Bauer, Sebastian, Neubert, Valentin, Costard, Lara Sophie, Rosenow, Felix, Triesch, Jochen

论文摘要

癫痫是一种常见的神经系统疾病,其特征是复发性癫痫发作,伴随着过度同步脑活动。结构和功能性大脑改变导致癫痫发作易感性增加和最终自发癫痫发作的过程称为癫痫发生(EPG),并且可能跨越数月甚至几年。检测和监测EPG的进展可以允许有针对性的早期干预措施,这些干预措施可能会减慢疾病进展甚至停止其发育。在这里,我们提出了一种使用深神经网络进行分期的EPG的方法,并确定潜在的脑电图(EEG)生物标志物,以区分EPG的不同阶段。具体而言,从啮齿动物模型中收集了连续的颅内脑电图记录,在该模型中,癫痫是由电孔孔途径刺激(PPS)诱导的。对PPS和PPS之后不久,在第一次自发癫痫发作之前(FSS)之前不久,对刺激前(基线)(基线)(基线)(基线)(基线)(基线)(基线)(基线)(基线)进行训练,对深度神经网络(DNN)进行了训练。实验结果表明,我们提出的方法可以对三个阶段的脑电图进行分类,而曲线(AUC)下方的平均面积为0.93、0.89和0.86。据我们所知,这代表了在使用DNN进行FSS之前首次成功进行EPG的尝试。

Epilepsy is a common neurological disorder characterized by recurrent seizures accompanied by excessive synchronous brain activity. The process of structural and functional brain alterations leading to increased seizure susceptibility and eventually spontaneous seizures is called epileptogenesis (EPG) and can span months or even years. Detecting and monitoring the progression of EPG could allow for targeted early interventions that could slow down disease progression or even halt its development. Here, we propose an approach for staging EPG using deep neural networks and identify potential electroencephalography (EEG) biomarkers to distinguish different phases of EPG. Specifically, continuous intracranial EEG recordings were collected from a rodent model where epilepsy is induced by electrical perforant pathway stimulation (PPS). A deep neural network (DNN) is trained to distinguish EEG signals from before stimulation (baseline), shortly after the PPS and long after the PPS but before the first spontaneous seizure (FSS). Experimental results show that our proposed method can classify EEG signals from the three phases with an average area under the curve (AUC) of 0.93, 0.89, and 0.86. To the best of our knowledge, this represents the first successful attempt to stage EPG prior to the FSS using DNNs.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源