论文标题

考虑动态唤醒效果的风电场的深度学习辅助模型预测控制

Deep Learning-Aided Model Predictive Control of Wind Farms for AGC Considering the Dynamic Wake Effect

论文作者

Chen, Kaixuan, Lin, Jin, Qiu, Yiwei, Liu, Feng, Song, Yonghua

论文摘要

为了提供自动生成控制(AGC)服务,需要动态控制其操作以跟踪随时间变化的功率参考。唤醒效应在涡轮机之间施加了显着的空气动力相互作用,这极大地影响了WF动力学产生。但是,动态唤醒模型的非线性和高维质具有极高的计算复杂性并掩盖了WF控制器的设计。本文通过提出了一种新型的面向控制的降低订单WF模型和深度学习的模型预测控制(MPC)方法来克服动态唤醒模型带来的控制难度。利用计算流体动力学(CFD)的最新进展提供了模拟WF动态唤醒流的高保真数据,两个新型的深神经网络(DNN)体系结构是专门设计的,旨在学习一个动力学WF降低订购模型(ROM),可以捕获主要的流动动力学。然后,构建了一个新型的MPC框架,该框架明确地结合了所获得的WF ROM,以协调不同的涡轮机,同时考虑动态唤醒相互作用。提出的WF ROM和控制方法将以广泛认可的高维动态WF模拟器进行评估,其精度已通过现实的测量数据验证。研究了一个9涡轮的WF外壳和较大的25涡轮机WF情况。通过将WF模型态降低许多数量级,控制方法的计算负担大大减轻了。此外,通过提出的方法,与现有的贪婪控制器相比,WF在动态操作中可以跟踪的AGC信号范围。

To provide automatic generation control (AGC) service, wind farms (WFs) are required to control their operation dynamically to track the time-varying power reference. Wake effects impose significant aerodynamic interactions among turbines, which remarkably influence the WF dynamic power production. The nonlinear and high-dimensional nature of dynamic wake model, however, brings extremely high computation complexity and obscure the design of WF controllers. This paper overcomes the control difficulty brought by the dynamic wake model by proposing a novel control-oriented reduced order WF model and a deep-learning-aided model predictive control (MPC) method. Leveraging recent advances in computational fluid dynamics (CFD) to provide high-fidelity data that simulates WF dynamic wake flows, two novel deep neural network (DNN) architectures are specially designed to learn a dynamic WF reduced-order model (ROM) that can capture the dominant flow dynamics. Then, a novel MPC framework is constructed that explicitly incorporates the obtained WF ROM to coordinate different turbines while considering dynamic wake interactions. The proposed WF ROM and the control method are evaluated in a widely-accepted high-dimensional dynamic WF simulator whose accuracy has been validated by realistic measurement data. A 9-turbine WF case and a larger 25-turbine WF case are studied. By reducing WF model states by many orders of magnitude, the computational burden of the control method is reduced greatly. Besides, through the proposed method, the range of AGC signals that can be tracked by the WF in the dynamic operation is extended compared with the existing greedy controller.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源