论文标题
通过同时密集和稀疏编码来改善歧视性重建
Towards improving discriminative reconstruction via simultaneous dense and sparse coding
论文作者
论文摘要
从稀疏编码模型中提取的判别特征已显示出很好地进行分类。通过考虑从数据中学到的新密集的先验,最近的深度学习体系结构进一步改善了反问题的重建。我们提出了一种新颖的密集和稀疏编码模型,该模型既整合了表示能力和判别特征。该模型研究了恢复密度向量$ \ MATHBF {X} $的问题和稀疏的向量$ \ MathBf {U} $给定$ \ \ Mathbf {y} = \ Mathbf {y Mathbf {a} a} \ Mathbf {a} \ Mathbf {x}+\ \ \ \ \ \ \ \ \ \ \ Mathbf {我们的第一个分析提出了基于与矩阵$ \ mathbf {a} $和$ \ mathbf {b} $相对应的跨越子空间之间的最小角度的几何条件,可以保证对模型的独特解决方案。第二个分析表明,在温和的假设下,凸面程序恢复了密集和稀疏的成分。我们验证了该模型对模拟数据的有效性,并提出了一个量身定制的密集且稀疏的自动编码器(densae),以从密集且稀疏的模型中学习字典。我们证明(i)densae比稀疏的编码模型($ \ Mathbf {b} \ Mathbf {U} $),(ii)在噪音的存在下,训练后者的偏见与隐式学习$ \ Mathbf {A} a} \ Mathbf {x {x x {x {x x {x { \ Mathbf {B} \ MathBf {U} $模型,(III)$ \ MathBf {A} $和$ \ MathBf {B} $分别捕获低和高频内容,以及(iv)与稀疏编码模型相比,Densae提供了平衡的歧视功能和代表性之间的平衡。
Discriminative features extracted from the sparse coding model have been shown to perform well for classification. Recent deep learning architectures have further improved reconstruction in inverse problems by considering new dense priors learned from data. We propose a novel dense and sparse coding model that integrates both representation capability and discriminative features. The model studies the problem of recovering a dense vector $\mathbf{x}$ and a sparse vector $\mathbf{u}$ given measurements of the form $\mathbf{y} = \mathbf{A}\mathbf{x}+\mathbf{B}\mathbf{u}$. Our first analysis proposes a geometric condition based on the minimal angle between spanning subspaces corresponding to the matrices $\mathbf{A}$ and $\mathbf{B}$ that guarantees unique solution to the model. The second analysis shows that, under mild assumptions, a convex program recovers the dense and sparse components. We validate the effectiveness of the model on simulated data and propose a dense and sparse autoencoder (DenSaE) tailored to learning the dictionaries from the dense and sparse model. We demonstrate that (i) DenSaE denoises natural images better than architectures derived from the sparse coding model ($\mathbf{B}\mathbf{u}$), (ii) in the presence of noise, training the biases in the latter amounts to implicitly learning the $\mathbf{A}\mathbf{x} + \mathbf{B}\mathbf{u}$ model, (iii) $\mathbf{A}$ and $\mathbf{B}$ capture low- and high-frequency contents, respectively, and (iv) compared to the sparse coding model, DenSaE offers a balance between discriminative power and representation.