论文标题

在Android设备上存在风险通信的情况下,贝叶斯对用户应用程序选择的评估

Bayesian Evaluation of User App Choices in the Presence of Risk Communication on Android Devices

论文作者

Momenzadeh, Behnood, Gopavaram, Shakthidhar, Das, Sanchari, Camp, L Jean

论文摘要

在无处不在的技术时代,以安全性和以隐私为中心的选择是个人和组织的重要关注点。这种普遍技术的风险是广泛的,并且经常因用户风险感知而错过,因此无法帮助用户做出隐私意识到的决策。研究人员通常会尝试找到解决方案,以将信任扩展到我们通常难以理解的电子网络环境中。为了实现安全性和以隐私为中心的决策,我们主要关注移动市场的领域,研究风险指标如何帮助人们选择更安全和隐私的应用程序。我们对N = 60名参与者进行了自然主义实验,我们要求他们在Android平板电脑上选择具有准确的实时市场数据的应用程序。我们发现,在存在用户风险感知一致的视觉指示器的情况下,APP选择更改为更避免风险的风险。我们的研究设计和研究提出了实用和可用的互动,可以在应用程序选择期间对个人进行更多知识,风险感知的比较。我们包括一个明确的论点,说明人类决策在应用程序选择过程中的作用,超越了当前使用机器学习在运行时选择后自动化隐私偏好的趋势。

In the age of ubiquitous technologies, security- and privacy-focused choices have turned out to be a significant concern for individuals and organizations. Risks of such pervasive technologies are extensive and often misaligned with user risk perception, thus failing to help users in taking privacy-aware decisions. Researchers usually try to find solutions for coherently extending trust into our often inscrutable electronic networked environment. To enable security- and privacy-focused decision-making, we mainly focused on the realm of the mobile marketplace, examining how risk indicators can help people choose more secure and privacy-preserving apps. We performed a naturalistic experiment with N=60 participants, where we asked them to select applications on Android tablets with accurate real-time marketplace data. We found that, in aggregate, app selections changed to be more risk-averse in the presence of user risk-perception-aligned visual indicators. Our study design and research propose practical and usable interactions that enable more informed, risk-aware comparisons for individuals during app selections. We include an explicit argument for the role of human decision-making during app selection, beyond the current trend of using machine learning to automate privacy preferences after selection during run-time.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源