论文标题

域的适应性通过形态分割

Domain Adaptation with Morphologic Segmentation

论文作者

Klein, Jonathan, Pirk, Sören, Michels, Dominik L.

论文摘要

我们提出了一个新型的域适应框架,该框架使用形态分割将图像从任意输入域(实际和合成)转化为均匀的输出域。我们的框架基于已建立的图像到图像翻译管道,该管道使我们能够首先将输入图像转换为编码形态学和语义的广义表示形式-Edge-Plus-Plus-Sementation图(EPS) - 然后将其转换为输出域。转换为输出域的图像是光真逼真的,并且不含在不同的真实(例如镜头耀斑,运动模糊等)和合成(例如,不切实际的纹理,简化的几何形状等)数据集中通常存在的文物。我们的目标是建立一个预处理步骤,该步骤将来自多个来源的数据统一为一个共同表示,以促进计算机视觉中的训练下游任务。这样,现有任务的神经网络可以接受更多的培训数据的培训,而它们也不会因特定数据集的过度影响而受到较少的影响。我们通过定性和定量评估我们的方法在城市场景的四个数据集和真实数据集上通过定性和定量评估我们的方法的有效性。可以在http://jonathank.de/research/eps/的项目网站上找到其他结果。

We present a novel domain adaptation framework that uses morphologic segmentation to translate images from arbitrary input domains (real and synthetic) into a uniform output domain. Our framework is based on an established image-to-image translation pipeline that allows us to first transform the input image into a generalized representation that encodes morphology and semantics - the edge-plus-segmentation map (EPS) - which is then transformed into an output domain. Images transformed into the output domain are photo-realistic and free of artifacts that are commonly present across different real (e.g. lens flare, motion blur, etc.) and synthetic (e.g. unrealistic textures, simplified geometry, etc.) data sets. Our goal is to establish a preprocessing step that unifies data from multiple sources into a common representation that facilitates training downstream tasks in computer vision. This way, neural networks for existing tasks can be trained on a larger variety of training data, while they are also less affected by overfitting to specific data sets. We showcase the effectiveness of our approach by qualitatively and quantitatively evaluating our method on four data sets of simulated and real data of urban scenes. Additional results can be found on the project website available at http://jonathank.de/research/eps/ .

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源