论文标题

多重分子加权分解的部分互相关分析,以量化两个受共同外部因素影响的两个非平稳时间序列的固有幂律互相关

Multifractal temporally weighted detrended partial cross-correlation analysis to quantify intrinsic power-law cross-correlation of two non-stationary time series affected by common external factors

论文作者

Li, Bao-Gen, Ling, Dian-Yi, Yu, Zu-Guo

论文摘要

当共同因素强烈影响复杂自然和社会系统中记录的两个跨相关时间序列时,如果我们使用多重划分的互换互相关分析(MF-DXA)而没有考虑这些常见因素,则结果将会偏差。基于我们的组提出的多f骨交叉互相关分析(MF-TWXDFA),由我们提出的以及Qian等人提出的多重截面部分互相关分析(MF-DPXA),我们提出了一种新方法 - 我们提出了一种新的方法----新方法-----多交易的时间跨性跨性别的跨跨跨跨跨跨跨跨跨跨性别分类分析(MFCCAICACA)在本文中,两个非平稳时间序列受共同外部因素影响。我们使用MF-TWDPCCA来表征两个通过删除其他潜在时间序列的效果,同时记录两个时间序列之间的固有互相关。为了测试MF-TWDPCCA的性能,我们将其应用于模拟系列中的MF-TWXDFA和MF-DPXA。人为模拟的系列的数值测试表明,MF-TWDPCCA可以准确地检测两个同时记录的序列的固有互相关。为了进一步显示MF-TWDPCCA的效用,我们将其应用于股票市场的时间序列,发现股票收益之间存在明显的多型幂律互相关。定义了一个新的部分互相关系数,以量化两个时间序列之间的内在互相关水平。

When common factors strongly influence two cross-correlated time series recorded in complex natural and social systems, the results will be biased if we use multifractal detrended cross-correlation analysis (MF-DXA) without considering these common factors. Based on multifractal temporally weighted detrended cross-correlation analysis (MF-TWXDFA) proposed by our group and multifractal partial cross-correlation analysis (MF-DPXA) proposed by Qian et al., we propose a new method---multifractal temporally weighted detrended partial cross-correlation analysis (MF-TWDPCCA) to quantify intrinsic power-law cross-correlation of two non-stationary time series affected by common external factors in this paper. We use MF-TWDPCCA to characterize the intrinsic cross-correlations between the two simultaneously recorded time series by removing the effects of other potential time series. To test the performance of MF-TWDPCCA, we apply it, MF-TWXDFA and MF-DPXA on simulated series. Numerical tests on artificially simulated series demonstrate that MF-TWDPCCA can accurately detect the intrinsic cross-correlations for two simultaneously recorded series. To further show the utility of MF-TWDPCCA, we apply it on time series from stock markets and find that there exists significantly multifractal power-law cross-correlation between stock returns. A new partial cross-correlation coefficient is defined to quantify the level of intrinsic cross-correlation between two time series.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源