论文标题

高阶量子储层计算

Higher-Order Quantum Reservoir Computing

论文作者

Tran, Quoc Hoan, Nakajima, Kohei

论文摘要

量子储存计算(QRC)是将量子系统的自然动态作为计算资源的新兴范式,可用于时间机器学习任务。在当前的设置中,QRC很难处理高维数据,并且在物理实现中具有可伸缩性的主要缺点。我们提出了高阶QRC,这是一种由多个但小的量子系统组成的混合量子古典框架,它们通过线性反馈(例如线性反馈)相互通信。通过利用经典技术和量子技术的优势,我们的框架可以有效地实现QRC的可扩展性和性能。此外,高阶设置使我们能够实施力量学习或先天训练方案,该方案为利用高维量子动态提供了灵活性和高操作性,并显着扩展了QRC的应用域。我们展示了框架在模拟大规模非线性动力学系统中的有效性,包括复杂的时空混乱,在某些情况下,它的表现优于许多现有的机器学习技术。

Quantum reservoir computing (QRC) is an emerging paradigm for harnessing the natural dynamics of quantum systems as computational resources that can be used for temporal machine learning tasks. In the current setup, QRC is difficult to deal with high-dimensional data and has a major drawback of scalability in physical implementations. We propose higher-order QRC, a hybrid quantum-classical framework consisting of multiple but small quantum systems that are mutually communicated via classical connections like linear feedback. By utilizing the advantages of both classical and quantum techniques, our framework enables an efficient implementation to boost the scalability and performance of QRC. Furthermore, higher-order settings allow us to implement a FORCE learning or an innate training scheme, which provides flexibility and high operability to harness high-dimensional quantum dynamics and significantly extends the application domain of QRC. We demonstrate the effectiveness of our framework in emulating large-scale nonlinear dynamical systems, including complex spatiotemporal chaos, which outperforms many of the existing machine learning techniques in certain situations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源