论文标题

在某些功能空间的Tingley问题的变体上

On a variant of Tingley's problem for some function spaces

论文作者

Leung, Chi-Wai, Ng, Chi-Keung, Wong, Ngai-Ching

论文摘要

令$(ω,\ mathfrak {a},μ)和$(γ,\ mathfrak {b},ν)$为两个任意度量空间,而$ p \ in [1,\ infty] $。集$$ l^p(μ)_+^\ mathrm {sp}:= \ {f \ in l^p(μ):\ | f \ | _p = 1; f \ geq 0 \μ\ text {-a.e。} \} $$,即$ l^p(μ)$的单位球的正部分。我们表明,每个保存双重保留的指标$φ:l^p(μ)_+^\ mathrm {sp} \ to l^p(ν)_+^\ mathrm {sp} $可以扩展(必然是独特的),从$ l^p(μ)$ l^p(un)$ l^p(n p(uniove)$ l^p(n limemorplist)。提供$φ$的lamperti表单,即加权形式,当$(γ,\ mathfrak {b},ν)$提供$φ$的形式(尤其是$σ$ -finite时)。 另一方面,我们表明,对于紧凑的Hausdorff Spaces $ x $和$ y $,如果$φ$是从$ c(x)$的$ c(y)$的单位球的积极部分中保存的二号双射击,则有一个同型$τ: c(x)_+^\ mathrm {sp}; y \ in y $)。

Let $(Ω, \mathfrak{A}, μ)$ and $(Γ, \mathfrak{B}, ν)$ be two arbitrary measure spaces, and $p\in [1,\infty]$. Set $$L^p(μ)_+^\mathrm{sp}:= \{f\in L^p(μ): \|f\|_p =1; f\geq 0\ μ\text{-a.e.} \}$$ i.e., the positive part of the unit sphere of $L^p(μ)$. We show that every metric preserving bijection $Φ: L^p(μ)_+^\mathrm{sp} \to L^p(ν)_+^\mathrm{sp}$ can be extended (necessarily uniquely) to an isometric order isomorphism from $L^p(μ)$ onto $L^p(ν)$. A Lamperti form, i.e., a weighted composition like form, of $Φ$ is provided, when $(Γ, \mathfrak{B}, ν)$ is localizable (in particular, when it is $σ$-finite). On the other hand, we show that for compact Hausdorff spaces $X$ and $Y$, if $Φ$ is a metric preserving bijection from the positive part of the unit sphere of $C(X)$ to that of $C(Y)$, then there is a homeomorphism $τ:Y\to X$ satisfying $Φ(f)(y) = f(τ(y))$ ($f\in C(X)_+^\mathrm{sp}; y\in Y$).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源