论文标题
来自大量离散位错动力学数据库的基于脱位密度的可塑性模型
Dislocation Density-Based Plasticity Model from Massive Discrete Dislocation Dynamics Database
论文作者
论文摘要
我们通过对单轴张力下的200多个离散的脱位动力学(DDD)模拟进行了系统的粗粒分析,为单晶铜提供了基于脱位密度的应变硬化模型。所提出的本构模型具有两个组成部分:一个广义的泰勒关系,将分辨的剪切应力连接到单个滑移系统上的脱位密度,以及用于脱位乘法的广义kocks-Mecks-Mecks-Mecking模型。 DDD数据强烈表明流动应力对每个滑动系统的塑料剪切应变速率的对数依赖性,并且等效地,塑料剪切应变速率对分辨剪切应力的指数依赖性。因此,提出的广义泰勒关系归因于塑料流的Orowan关系。 DDD数据还要求对脱位乘法的Kocks-Mecking模型进行校正,以说明具有可忽略的塑料剪切应变速率在滑移系统上的位错密度的增加。这是通过允许每个滑动系统上的乘法速率来完成的,以包括两个共面滑动系统的塑性应变速率的贡献。所得的本构模型成功地捕获了DDD模拟预测的负载方向的应变硬化速率依赖性,这也与现有实验一致。
We present a dislocation density-based strain hardening model for single crystal copper through a systematic coarse-graining analysis of more than 200 discrete dislocation dynamics (DDD) simulations of plastic deformation under uniaxial tension. The proposed constitutive model has two components: a generalized Taylor relation connecting resolved shear stresses to dislocation densities on individual slip systems, and a generalized Kocks-Mecking model for dislocation multiplication. The DDD data strongly suggests a logarithmic dependence of flow stress on the plastic shear strain rate on each slip system, and, equivalently, an exponential dependence of the plastic shear strain rate on the resolved shear stress. Hence the proposed generalized Taylor relation subsumes the Orowan relation for plastic flow. The DDD data also calls for a correction to the Kocks-Mecking model of dislocation multiplication to account for the increase of dislocation density on slip systems with negligible plastic shear strain rate. This is accomplished by allowing the multiplication rate on each slip system to include contributions from the plastic strain rates of the two coplanar slip systems. The resulting constitutive model successfully captures the strain hardening rate dependence on the loading orientation as predicted by the DDD simulations, which is also consistent with existing experiments.