论文标题
在有限温度和密度下,爱因斯坦 - 麦克斯韦 - 迪拉顿全息的关键性
Criticality from Einstein-Maxwell-dilaton holography at finite temperature and density
论文作者
论文摘要
我们研究了渐近广告的Einstein-Maxwell-Dilaton(EMD)方程的一致的带电黑洞溶液。溶液是在有限温度和密度下的非符号等离子体相位的重力二元。对于Dilaton,我们采用二次ANSATZ,导致在零温度和密度下进行线性限制。我们考虑了一个宏伟的典型合奏,其中化学电位是固定的,并找到了涉及大小黑洞竞争的丰富相图。相图包含一个临界线和一个类似于范德华 - 马克斯韦尔液体液体转变的临界点。随着临界点的接近,我们表明等离子体相中的痕量异常消失了,这意味着流体中的共形对称性的恢复。我们发现,在通用关键指数的关键点$α=γ= 2/3 $,我们发现热容量和电荷易感性差异为$ c_v \ propto(t-t^c)^{ - α} $和$χ\ propto(t-t^c)^{ - γ} $。我们的结果表明,在灾难理论方面,描述了临界点附近的热力学。在限制$μ\至0 $中,我们将结果与$ su(n_c)$ yang-mills理论的晶格结果进行比较。
We investigate consistent charged black hole solutions to the Einstein-Maxwell-Dilaton (EMD) equations that are asymptotically AdS. The solutions are gravity duals to phases of a non-conformal plasma at finite temperature and density. For the dilaton we take a quadratic ansatz leading to linear confinement at zero temperature and density. We consider a grand canonical ensemble, where the chemical potential is fixed, and find a rich phase diagram involving the competition of small and large black holes. The phase diagram contains a critical line and a critical point similar to the van der Waals-Maxwell liquid-gas transition. As the critical point is approached, we show that the trace anomaly in the plasma phases vanishes signifying the restoration of conformal symmetry in the fluid. We find that the heat capacity and charge susceptibility diverge as $C_V \propto (T-T^c)^{-α}$ and $χ\propto (T-T^c)^{-γ}$ at the critical point with universal critical exponents $α=γ=2/3$. Our results suggest a description of the thermodynamics near the critical point in terms of catastrophe theories. In the limit $μ\to 0$ we compare our results with lattice results for $SU(N_c)$ Yang-Mills theories.