论文标题
估计并发气候极端:条件方法
Estimating Concurrent Climate Extremes: A Conditional Approach
论文作者
论文摘要
在多个气候变量中同时同时同时同意极值会导致巨大的社会和环境影响。因此,人们对理解这些并发的极端情况越来越兴趣。在许多应用中,不仅频率,而且并发极端的幅度也令人感兴趣。解决此问题的一种方法是研究一个气候变量的分布,因为另一个气候变量是极端的。在这项工作中,我们开发了一个统计框架,用于通过条件方法估算双变量并发极端,其中单变量的极值建模与使用分位数回归和极值分析的技术相结合,以量化有条件的尾巴分布,以量化同意的极端。我们专注于以每日降水为条件的每日风速分配,以季节性最大化。加拿大区域气候模型大集合用于通过具有指定依赖性结构的仿真研究以及对气候模型模拟的依赖性结构的分析来评估所提出的框架的性能。
Simultaneous concurrence of extreme values across multiple climate variables can result in large societal and environmental impacts. Therefore, there is growing interest in understanding these concurrent extremes. In many applications, not only the frequency but also the magnitude of concurrent extremes are of interest. One way to approach this problem is to study the distribution of one climate variable given that another is extreme. In this work we develop a statistical framework for estimating bivariate concurrent extremes via a conditional approach, where univariate extreme value modeling is combined with dependence modeling of the conditional tail distribution using techniques from quantile regression and extreme value analysis to quantify concurrent extremes. We focus on the distribution of daily wind speed conditioned on daily precipitation taking its seasonal maximum. The Canadian Regional Climate Model large ensemble is used to assess the performance of the proposed framework both via a simulation study with specified dependence structure and via an analysis of the climate model-simulated dependence structure.