论文标题

分析流形学习:统一和评估持续控制的表示形式

Analytic Manifold Learning: Unifying and Evaluating Representations for Continuous Control

论文作者

Antonova, Rika, Maydanskiy, Maksim, Kragic, Danica, Devlin, Sam, Hofmann, Katja

论文摘要

我们从流式传输高维观察中学习可重复使用的状态表示的问题。这对于诸如增强学习(RL)之类的领域很重要,该领域在培训过程中产生非平稳数据分布。我们做出了两个关键的贡献。首先,我们提出了一个评估套件,该套件可以测量潜在和真实低维状态之间的对齐。我们基准了几种广泛使用的无监督学习方法。这揭示了现有方法的优势和局限性,这些方法对潜在空间施加了其他约束/目标。我们的第二个贡献是学习潜在关系的统一数学表述。我们了解源域上的分析关系,然后使用这些关系来帮助在目标域学习时构建潜在空间。该公式可实现一种更通用,灵活和原则性的塑造潜在空间的方法。它在不施加限制性简化假设或需要特定于领域的信息的情况下正式学习独立关系的概念。我们介绍了用于实施和转移潜在关系的数学属性,用于实施和实验验证的具体算法。

We address the problem of learning reusable state representations from streaming high-dimensional observations. This is important for areas like Reinforcement Learning (RL), which yields non-stationary data distributions during training. We make two key contributions. First, we propose an evaluation suite that measures alignment between latent and true low-dimensional states. We benchmark several widely used unsupervised learning approaches. This uncovers the strengths and limitations of existing approaches that impose additional constraints/objectives on the latent space. Our second contribution is a unifying mathematical formulation for learning latent relations. We learn analytic relations on source domains, then use these relations to help structure the latent space when learning on target domains. This formulation enables a more general, flexible and principled way of shaping the latent space. It formalizes the notion of learning independent relations, without imposing restrictive simplifying assumptions or requiring domain-specific information. We present mathematical properties, concrete algorithms for implementation and experimental validation of successful learning and transfer of latent relations.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源