论文标题

TMLECommunity:实施目标最大似然估计的R软件包的社区级别数据

tmleCommunity: A R Package Implementing Target Maximum Likelihood Estimation for Community-level Data

论文作者

Zhang, Chi, Ahern, Jennifer, van der Laan, Mark J., Sofrygin, Oleg

论文摘要

在过去的几年中,许多应用程序旨在评估社区层面分配的治疗的因果效应,而数据仍在社区个体中的个体层面收集。在许多情况下,人们想评估随机干预对社区的影响,在该社区中,目标人群中的所有社区都基于已知的特定机制接受概率分配的治疗方法(例如,实施社区级别的干预政策,以目标社区行为行为的随机变化)。最近开发了TMLECommunity软件包,以实现针对性的最小损失估计(TMLE),即在一个时间点上对社区级干预的影响对基于个人感兴趣的基于个人的结果(包括平均因果效应)的影响。还可以使用逆验证加权(IPTW)和G-Compaint公式(GCOMP)的实现。该软件包支持具有二进制或连续结果的多元任意(即静态,动态或随机)干预措施。此外,它允许通过Superlearner,SL3和H2OEnsemble软件包用户指定的数据自适应机器学习算法。本文将描述TMLECommunity软件包的使用以及一些示例。

Over the past years, many applications aim to assess the causal effect of treatments assigned at the community level, while data are still collected at the individual level among individuals of the community. In many cases, one wants to evaluate the effect of a stochastic intervention on the community, where all communities in the target population receive probabilistically assigned treatments based on a known specified mechanism (e.g., implementing a community-level intervention policy that target stochastic changes in the behavior of a target population of communities). The tmleCommunity package is recently developed to implement targeted minimum loss-based estimation (TMLE) of the effect of community-level intervention(s) at a single time point on an individual-based outcome of interest, including the average causal effect. Implementations of the inverse-probability-of-treatment-weighting (IPTW) and the G-computation formula (GCOMP) are also available. The package supports multivariate arbitrary (i.e., static, dynamic or stochastic) interventions with a binary or continuous outcome. Besides, it allows user-specified data-adaptive machine learning algorithms through SuperLearner, sl3 and h2oEnsemble packages. The usage of the tmleCommunity package, along with a few examples, will be described in this paper.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源