论文标题
在太阳磁盘图像和天气图中识别冠状孔的机器学习方法
Machine-learning approach to identification of coronal holes in solar disk images and synoptic maps
论文作者
论文摘要
太阳冠状孔(CHS)的识别提供了用于操作空间天气预测和太阳活动的长期研究的信息。第一个问题的源数据通常是最新的太阳能磁盘观测值,而对于第二个问题,考虑太阳能图像很方便。通过这两种情况下,CHS概念应该相似的想法,我们研究了可以在磁盘图像中学习CHS分割并在概要图中重现相同分割的通用模型。我们证明,在日常磁盘图像上训练的卷积神经网络(CNN)提供了概要图及其极点投影的准确CHS分割。使用这种方法,我们基于193 Angstrom波长中的SDO/AIA观测值,在2010 - 20年期间构建了天气图的目录。将所获得的CHS天气图与时间纬度和时间范围图中的磁性概要图进行了比较。最初的结果表明,尽管在某些情况下,CHS与磁通传输事件相关,但还有其他机制有助于CHS形成和进化。为了刺激进一步的研究,概要图的目录在开放访问中发表。
Identification of solar coronal holes (CHs) provides information both for operational space weather forecasting and long-term investigation of solar activity. Source data for the first problem are typically most recent solar disk observations, while for the second problem it is convenient to consider solar synoptic maps. Motivated by the idea that the concept of CHs should be similar for both cases we investigate universal models that can learn a CHs segmentation in disk images and reproduce the same segmentation in synoptic maps. We demonstrate that Convolutional Neural Networks (CNN) trained on daily disk images provide an accurate CHs segmentation in synoptic maps and their pole-centric projections. Using this approach we construct a catalog of synoptic maps for the period of 2010-20 based on SDO/AIA observations in the 193 Angstrom wavelength. The obtained CHs synoptic maps are compared with magnetic synoptic maps in the time-latitude and time-longitude diagrams. The initial results demonstrate that while in some cases the CHs are associated with magnetic flux transport events there are other mechanisms contributing to the CHs formation and evolution. To stimulate further investigations the catalog of synoptic maps is published in open access.