论文标题
使用疏水性内圆柱体泰勒 - 库特湍流中的疏水性内圆柱体减少起泡的阻力
Bubbly drag reduction using a hydrophobic inner cylinder in Taylor-Couette turbulence
论文作者
论文摘要
在这项研究中,我们通过实验研究了高度湍流的水流中的气泡阻力减少,分散空气为$ 5.0 \ times 10^{5} \ leq \ leq \ text {re} \ leq leq 1.7 \ times 10^{6} $在包含微观粗糙度的非润湿表面上。为此,使用了泰勒 - 库特几何形状,从而允许准确的全局阻力和局部流量测量值。内部圆柱体涂有粗糙的疏水材料 - 旋转,而光滑的外部圆柱体保持静止。关键控制参数是工作流体中存在的空气体积分数$α$。对于小体积分数($α<{4} \,\%$),我们观察到涂层的表面粗糙度会增加阻力。对于大容量的空气($α\ geq 4 \,\%$),使用相同的空气量相同,与内部和外部圆柱体相比,阻力减小,即内部和外部圆柱体,即光滑和亲水。这表明两种竞争机制是到位的:一方面,粗糙度引起了日志层的延伸 - 导致阻力增加 - 另一方面,疏水表面与气泡液体相互作用有一种减速机制。这两种效果之间的平衡决定了总体减少还是阻力增强。为了进一步增加气泡浓度$α= {6} \,\%$,我们找到了减速效果的饱和。我们的研究提供了有关疏水壁构成的湍流中起泡阻力减少的工业应用指南。
In this study we experimentally investigate bubbly drag reduction in a highly turbulent flow of water with dispersed air at $5.0 \times 10^{5} \leq \text{Re} \leq 1.7 \times 10^{6}$ over a non-wetting surface containing micro-scale roughness. To do so, the Taylor-Couette geometry is used, allowing for both accurate global drag and local flow measurements. The inner cylinder - coated with a rough, hydrophobic material - is rotating, whereas the smooth outer cylinder is kept stationary. The crucial control parameter is the air volume fraction $α$ present in the working fluid. For small volume fractions ($α< {4}\,\%$), we observe that the surface roughness from the coating increases the drag. For large volume fractions of air ($α\geq 4\,\%$), the drag decreases compared to the case with both the inner and outer cylinders uncoated, i.e. smooth and hydrophilic, using the same volume fraction of air. This suggests that two competing mechanisms are at place: on the one hand the roughness invokes an extension of the log-layer - resulting in an increase in drag - and on the other hand there is a drag-reducing mechanism of the hydrophobic surface interacting with the bubbly liquid. The balance between these two effects determines whether there is overall drag reduction or drag enhancement. For further increased bubble concentration $α= {6}\,\%$ we find a saturation of the drag reduction effect. Our study gives guidelines for industrial applications of bubbly drag reduction in hydrophobic wall-bounded turbulent flows.