论文标题

光子和深色能量的宇宙学质量作为其bose-内施泰因在de stater空间中的凝结物

Cosmological Mass of the Photon and Dark Energy as its Bose-Einstein Condensate in de Sitter Space

论文作者

Resca, Lorenzo Gallerani

论文摘要

我基于量子力学(QM)和一般相对论(GR)理论的基本原理和常数,开发了深色能量(DE)的物理图片。它源于基于QM定位,以宇宙学量表的QM定位,源自非零质量的猜想。暗能量与De Sitter空间有关,并且具有根本不变的事件范围。我认为de是宇宙学上大量光子的Bose-Einstein冷凝物(BEC),并且从根本上估计,每个粒子的结合能源自该BEC中有效吸引人的QM潜力。由于大量的光子可以在具有平坦的空间几何形状的De Sitter宇宙中静止,因此我解决了独立于时间的Schroedinger方程,以在De Sitter Horizo​​n的非相关性有吸引力的球形孔电孔电势自我培养。最小的临界电势深度结合了该孔顶部的粒子状态,并结合标准扁平$λ$ -CDM模型中深色能量压力关系的原型条件,提供了光子质量的估计值,$ m_g $。这是由对坐标时间切片的DE Sitter静态度量指标的BEC真空能的独立计算支持的。这些估计值提供了深色能量凝结的兼容说明,从而在核和宇宙学量表之间弥合了鸿沟。最值得注意的是,我认为宇宙学单元或“ $ g $单元”系统以各种方式补充了普朗克单位的基本系统。原来,普朗克的几何平均值和$ g $ - 大质量非常接近当前中微子群众的估计,这表明即使是最轻的已知费米子的群众也可能与GR和QM基本常数$λ$,$ g $,$ g $,$ c $和$ c $和$ h $密切相关。我终于将良好的结构常数与$ m_g $和限制在相应的宇宙学范围内的库仑电势相关联。

I develop a physical picture of dark energy (DE) based on fundamental principles and constants of quantum mechanics (QM) and general relativity (GR) theories. It derives from a conjecture of non-zero masses for nearly standard-model photons, based on QM localization at a cosmological scale. Dark energy is associated with de Sitter space and that has a fundamentally invariant event horizon. I conceive of DE as a Bose-Einstein condensate (BEC) of cosmologically massive photons and I estimate fundamentally the binding energy per particle originating from an effectively attractive QM potential in that BEC. Since massive photons may stand at rest in a de Sitter universe with flat spatial geometry, I solve the time-independent Schroedinger equation for a non-relativistic attractive spherical-well potential self-confining at the de Sitter horizon. The minimal critical potential depth that binds a particle state at the top of that well, combined with the prototypical condition of dark energy-pressure relation in the standard flat $Λ$-CDM model, provides an estimate of the photon mass, $m_g$. That is supported by an independent calculation of the vacuum energy of the BEC in a de Sitter static metric with coordinate-time slicing. These estimates provide compatible accounts of dark energy condensation, bridging a chasm between nuclear and cosmological scales. Most notably, I consider a system of cosmological units, or `$g$-units,' that complements the fundamental system of Planck units in various ways. The geometric mean of Planck and $g$-mass turns out to be remarkably close to current estimates of neutrino masses, suggesting that even masses of the lightest known fermions may be deeply related to both GR and QM fundamental constants $Λ$, $G$, $c$ and $h$. I finally relate the fine structure constant to $m_g$ and a Coulomb potential confined within a corresponding cosmological horizon.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源