论文标题
共同预测工作绩效,个性,认知能力,影响和福祉
Jointly Predicting Job Performance, Personality, Cognitive Ability, Affect, and Well-Being
论文作者
论文摘要
评估工作绩效,个性化健康和心理测量指标是数据驱动和无处不在的计算在未来产生深远影响的领域。现有技术使用从问卷,传感器(可穿戴,计算机等)或其他性状提取的数据来评估个人的福祉和认知属性。但是,这些技术既不能以全球方式预测个人的福祉和心理特征,也不能考虑与处理可用数据相关的挑战,而这些数据是不完整和嘈杂的。在本文中,我们创建了一个基准,用于从整合:身体和生理行为,心理状态和特质以及工作表现的角度对个体进行预测分析。我们将数据挖掘技术设计为基准,并使用来自可穿戴传感器的真实嘈杂和不完整的数据,以基于12个标准化验证的测试来预测19种结构。该研究包括757名参与者,他们是美国各地组织中担任各种工作角色的知识工作者。我们开发了一个数据挖掘框架,以提取所考虑的19个变量中的每个变量中的每个变量。我们的模型是将这些各种仪器衍生变量组合到单个框架中的第一个基准,通过利用可穿戴,移动和社交媒体来源的真实未经保护的数据来了解人们的行为。我们使用从纵向研究获得的数据对我们的方法进行实验验证。结果表明,当预测仅限于嘈杂,不完整的数据时,我们的框架始终可靠,能够比基线更好地预测研究中的变量。
Assessment of job performance, personalized health and psychometric measures are domains where data-driven and ubiquitous computing exhibits the potential of a profound impact in the future. Existing techniques use data extracted from questionnaires, sensors (wearable, computer, etc.), or other traits, to assess well-being and cognitive attributes of individuals. However, these techniques can neither predict individual's well-being and psychological traits in a global manner nor consider the challenges associated to processing the data available, that is incomplete and noisy. In this paper, we create a benchmark for predictive analysis of individuals from a perspective that integrates: physical and physiological behavior, psychological states and traits, and job performance. We design data mining techniques as benchmark and uses real noisy and incomplete data derived from wearable sensors to predict 19 constructs based on 12 standardized well-validated tests. The study included 757 participants who were knowledge workers in organizations across the USA with varied work roles. We developed a data mining framework to extract the meaningful predictors for each of the 19 variables under consideration. Our model is the first benchmark that combines these various instrument-derived variables in a single framework to understand people's behavior by leveraging real uncurated data from wearable, mobile, and social media sources. We verify our approach experimentally using the data obtained from our longitudinal study. The results show that our framework is consistently reliable and capable of predicting the variables under study better than the baselines when prediction is restricted to the noisy, incomplete data.