论文标题

HSPICE:复杂事件处理中的州感知事件脱落

hSPICE: State-Aware Event Shedding in Complex Event Processing

论文作者

Slo, Ahmad, Bhowmik, Sukanya, Rothermel, Kurt

论文摘要

在复杂的事件处理(CEP)中,在资源限制时,执行负载脱落以维持特定的延迟限制。但是,脱落负载意味着结果质量(QOR)的降解。因此,以对QOR影响最低的方式进行负载脱落至关重要。 CEP领域中的研究人员提议将事件或部分匹配(PMS)放在过载案例中。他们通过考虑事件的重要性或PMS的重要性,但并非一起将实用程序分配给事件或PM。在本文中,我们建议通过考虑事件重要性和PMS的重要性来将实用程序分配给事件,从而将CEP系统的负载脱落方法结合在一起。我们采用概率模型,该模型使用事件在窗口中的类型和位置以及PM的状态将实用程序分配给与每个PM相对应的事件。我们还提出了一种预测实用程序阈值的方法,该方法用于丢弃所需的事件以维持给定的延迟界限。通过对两个现实世界数据集和几个代表性查询的广泛评估,我们表明,在大多数情况下,我们的负载脱落方法的表现优于最先进的负载脱落方法,W.R.T。 Qor。

In complex event processing (CEP), load shedding is performed to maintain a given latency bound during overload situations when there is a limitation on resources. However, shedding load implies degradation in the quality of results (QoR). Therefore, it is crucial to perform load shedding in a way that has the lowest impact on QoR. Researchers, in the CEP domain, propose to drop either events or partial matches (PMs) in overload cases. They assign utilities to events or PMs by considering either the importance of events or the importance of PMs but not both together. In this paper, we propose a load shedding approach for CEP systems that combines these approaches by assigning a utility to an event by considering both the event importance and the importance of PMs. We adopt a probabilistic model that uses the type and position of an event in a window and the state of a PM to assign a utility to an event corresponding to each PM. We, also, propose an approach to predict a utility threshold that is used to drop the required amount of events to maintain a given latency bound. By extensive evaluations on two real-world datasets and several representative queries, we show that, in the majority of cases, our load shedding approach outperforms state-of-the-art load shedding approaches, w.r.t. QoR.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源