论文标题
美元
$\mathbb{Z}_2\times \mathbb{Z}_2$-graded supersymmetry: $2$-d sigma models
论文作者
论文摘要
我们提出了一个天然的$ \ mathbb {z} _2 \ times \ mathbb {z} _2 $ - $ d = 2 $,$ \ mathcal {n} =(1,1)$ supersymmetry and $ supersymmetry and a $ \ \ mathbb {z} _2 _2^2 $ -Space实现。由于评分,在古典语言中,增压是换向者而不是抗议机。然后,它用于构建通过模仿标准超空间方法表现出这种新型超对称性的经典(线性和非线性)Sigma模型。我们的模型中的田地是玻色子,右手和左手的主要摩纳 - 韦尔旋转器和异国情调的玻色子。玻色子与所有田地通勤,纺纱子属于交叉通勤而不是反派对的不同部门,而异国情调的玻色子与纺纱剂进行了反派对。作为其中一个模型的一个特殊示例,我们提供了超对称正弦理论的“双分级”版本。
We propose a natural $\mathbb{Z}_2 \times \mathbb{Z}_2$-graded generalisation of $d=2$, $\mathcal{N}=(1,1)$ supersymmetry and construct a $\mathbb{Z}_2^2$-space realisation thereof. Due to the grading, the supercharges close with respect to, in the classical language, a commutator rather than an anticommutator. This is then used to build classical (linear and non-linear) sigma models that exhibit this novel supersymmetry via mimicking standard superspace methods. The fields in our models are bosons, right-handed and left-handed Majorana-Weyl spinors, and exotic bosons. The bosons commute with all the fields, the spinors belong to different sectors that cross commute rather than anticommute, while the exotic boson anticommute with the spinors. As a particular example of one of the models, we present a `double-graded' version of supersymmetric sine-Gordon theory.