论文标题

非凸线最低最大优化:应用,挑战和最新理论进步

Non-convex Min-Max Optimization: Applications, Challenges, and Recent Theoretical Advances

论文作者

Razaviyayn, Meisam, Huang, Tianjian, Lu, Songtao, Nouiehed, Maher, Sanjabi, Maziar, Hong, Mingyi

论文摘要

Min-Max优化问题,也称为鞍点问题,是一个经典的优化问题,在零和游戏的背景下也研究了一个经典的优化问题。给定一类目标函数,目标是为参数找到一个值,即使在给定类中最坏的情况下,也会导致小小的目标值。 Min-Max优化问题最近在广泛的信号和数据处理应用程序中变得非常流行,例如公平的光束成形,训练生成对抗网络(GAN)和强大的机器学习,仅举几例。本文的总体目的是对最小的Min-Max问题的最新进展进行调查,其中最小化和最大化问题可能是非convex和/或非concave。特别是,我们将首先提出许多应用程序来展示此类最低问题的重要性;然后,我们讨论关键的理论挑战,并在解决非凸端最大问题问题方面对一些令人兴奋的理论和算法进步进行了选择性评论。最后,我们将指出开放的问题和未来的研究方向。

The min-max optimization problem, also known as the saddle point problem, is a classical optimization problem which is also studied in the context of zero-sum games. Given a class of objective functions, the goal is to find a value for the argument which leads to a small objective value even for the worst case function in the given class. Min-max optimization problems have recently become very popular in a wide range of signal and data processing applications such as fair beamforming, training generative adversarial networks (GANs), and robust machine learning, to just name a few. The overarching goal of this article is to provide a survey of recent advances for an important subclass of min-max problem, where the minimization and maximization problems can be non-convex and/or non-concave. In particular, we will first present a number of applications to showcase the importance of such min-max problems; then we discuss key theoretical challenges, and provide a selective review of some exciting recent theoretical and algorithmic advances in tackling non-convex min-max problems. Finally, we will point out open questions and future research directions.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源