论文标题

通过估值削减扩展的O最低结构的量化器消除

Quantifier elimination for o-minimal structures expanded by a valuational cut

论文作者

Ealy, Clifton, Maříková, Jana

论文摘要

让$ r $是$ \ textrm {th}(r)$消除量词的语言的O小组的O小型扩展,而让$ c $成为$ r $估值的谓词。我们确定了一种暗示$ \ textrm {th}(r,c)$ r $的语言的量化器的条件,该语言是$ c $和少量常数扩展的,而$ \ textrm {th}(th}(r,c)$又暗示了它具有量化器消除和普遍轴承式的。例如,在$ c $是O-Minimal Field $ r $的凸点的情况下,该条件适用,其残留场是O-Minimal。

Let $R$ be an o-minimal expansion of a group in a language in which $\textrm{Th}(R)$ eliminates quantifiers, and let $C$ be a predicate for a valuational cut in $R$. We identify a condition that implies quantifier elimination for $\textrm{Th}(R,C)$ in the language of $R$ expanded by $C$ and a small number of constants, and which, in turn, is implied by $\textrm{Th}(R,C)$ having quantifier elimination and being universally axiomatizable. The condition applies for example in the case when $C$ is a convex subring of an o-minimal field $R$ and its residue field is o-minimal.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源