论文标题
动态网络嵌入的调查
A Survey on Dynamic Network Embedding
论文作者
论文摘要
现实世界网络由各种相互作用和不断发展的实体组成,而大多数现有研究只是将它们作为特定的静态网络表征,而无需考虑动态网络的演化趋势。最近,在跟踪动态网络的属性方面取得了重大进展,这利用网络中实体和链接的变化以设计网络嵌入技术。与广泛提出的静态网络嵌入方法相比,动态网络嵌入努力将节点编码为低维密度表示,可有效地保留网络结构和时间动力学,这对多大型下游机器学习任务有益。在本文中,我们对动态网络嵌入进行了系统的调查。在特定的,动态网络嵌入的基本概念中,尤其是我们首次提出了现有动态网络嵌入技术的新型分类法,包括基于基于矩阵的基于SKIP-GRAM,基于自动编码器的基于自动编码器,基于神经网络的基于神经网络和其他嵌入方法。此外,我们仔细总结了常用的数据集以及动态网络嵌入可以受益的各种随后的任务。之后和主要的是,我们提出了一些挑战,即现有的算法面临并概述了促进未来研究的可能方向,例如动态嵌入模型,大规模的动态网络,异质动态网络,动态归因网络,任务动态网络嵌入和更多的嵌入空间。
Real-world networks are composed of diverse interacting and evolving entities, while most of existing researches simply characterize them as particular static networks, without consideration of the evolution trend in dynamic networks. Recently, significant progresses in tracking the properties of dynamic networks have been made, which exploit changes of entities and links in the network to devise network embedding techniques. Compared to widely proposed static network embedding methods, dynamic network embedding endeavors to encode nodes as low-dimensional dense representations that effectively preserve the network structures and the temporal dynamics, which is beneficial to multifarious downstream machine learning tasks. In this paper, we conduct a systematical survey on dynamic network embedding. In specific, basic concepts of dynamic network embedding are described, notably, we propose a novel taxonomy of existing dynamic network embedding techniques for the first time, including matrix factorization based, Skip-Gram based, autoencoder based, neural networks based and other embedding methods. Additionally, we carefully summarize the commonly used datasets and a wide variety of subsequent tasks that dynamic network embedding can benefit. Afterwards and primarily, we suggest several challenges that the existing algorithms faced and outline possible directions to facilitate the future research, such as dynamic embedding models, large-scale dynamic networks, heterogeneous dynamic networks, dynamic attributed networks, task-oriented dynamic network embedding and more embedding spaces.