论文标题

恢复与时间相关的数值重新归一化方法中的连续限制

Restoring the continuum limit in the time-dependent numerical renormalization group approach

论文作者

Böker, Jan, Anders, Frithjof B.

论文摘要

量子杂质问题中的连续耦合函数精确地分配为有限尺寸的威尔逊链和一个由一组其他储层代表的部分,每个储层都与一个威尔逊链位点耦合。这些额外的储层代表了数值重新归一化组忽略的环境的高能模式,需要恢复原始问题的连续限制。我们提出了一种杂交时间依赖性的数值重新归一化组方法,该方法结合了有限尺寸Wilson链上的非平衡动力学的准确数值重新归一化组和Bloch-Redfield形式主义,以包括这些附加储层的效果。我们的方法克服了由Wilson参数$λ> 1 $引起的时间依赖性数值重量化组方法的内在缺点。我们在分析上证明,对于具有单个化学电位的系统,热平衡降低密度算子是Bloch-Redfield Master方程的稳态解决方案。对于此主方程的数值解,采用了Lanczos方法,该方法将数值重新归一化组的所有能量壳耦合。提出的混合方法应用于相关的费米子量子障碍系统中的实时动力学。谐振级模型的分析解决方案是该方法准确性的基准,然后将其应用于非平凡模型,例如相互作用的谐振级模型和单个杂质Anderson模型。

The continuous coupling function in quantum impurity problems is exactly partitioned into a part represented by a finite size Wilson chain and a part represented by a set of additional reservoirs, each coupled to one Wilson chain site. These additional reservoirs represent high-energy modes of the environment neglected by the numerical renormalization group and are required to restore the continuum limit of the original problem. We present a hybrid time-dependent numerical renormalization group approach which combines an accurate numerical renormalization group treatment of the non-equilibrium dynamics on the finite size Wilson chain with a Bloch-Redfield formalism to include the effect of these additional reservoirs. Our approach overcomes the intrinsic shortcoming of the time-dependent numerical renormalization group approach induced by the bath discretization with a Wilson parameter $Λ> 1$. We analytically prove that for a system with a single chemical potential, the thermal equilibrium reduced density operator is the steady-state solution of the Bloch-Redfield master equation. For the numerical solution of this master equation a Lanczos method is employed which couples all energy shells of the numerical renormalization group. The presented hybrid approach is applied to the real-time dynamics in correlated fermionic quantum-impurity systems. An analytical solution of the resonant-level model serves as a benchmark for the accuracy of the method which is then applied to non-trivial models, such as the interacting resonant-level model and the single impurity Anderson model.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源