论文标题

不确定性定量的异质治疗效果的稳健递归分区

Robust Recursive Partitioning for Heterogeneous Treatment Effects with Uncertainty Quantification

论文作者

Lee, Hyun-Suk, Zhang, Yao, Zame, William, Shen, Cong, Lee, Jang-Won, van der Schaar, Mihaela

论文摘要

治疗效果的亚组分析在从医学到公共政策再到推荐系统的应用中起着重要作用。它允许医生(例如)确定给定药物或治疗可能是有效的患者组,而该患者群体则没有。当前的大多数亚组分析方法始于一种特定算法,用于估计个性化治疗效果(ITE)并通过最大化每个亚组平均治疗效应的亚组差异来识别亚组。这些方法有几个弱点:它们依靠一种特定的算法来估计ITE,它们忽略了已确定的亚组中的(IN)同质性,并且不会产生良好的信心估计。本文开发了一种用于亚组分析R2P的新方法,该方法解决了所有这些弱点。 R2P使用一种任意,外源规定的算法来估计ITE并使用比其他方法更强大的ITE估计的不确定性。使用合成和半合成数据集(基于实际数据)的实验表明,R2P构造分区比其他方法所产生的分区相比,在组内同时更均一,并且在各组中更异质。此外,由于R2P可以使用任何ITE估计器,因此与其他方法相比,它还具有规定的覆盖范围保证的较窄置信区间。

Subgroup analysis of treatment effects plays an important role in applications from medicine to public policy to recommender systems. It allows physicians (for example) to identify groups of patients for whom a given drug or treatment is likely to be effective and groups of patients for which it is not. Most of the current methods of subgroup analysis begin with a particular algorithm for estimating individualized treatment effects (ITE) and identify subgroups by maximizing the difference across subgroups of the average treatment effect in each subgroup. These approaches have several weaknesses: they rely on a particular algorithm for estimating ITE, they ignore (in)homogeneity within identified subgroups, and they do not produce good confidence estimates. This paper develops a new method for subgroup analysis, R2P, that addresses all these weaknesses. R2P uses an arbitrary, exogenously prescribed algorithm for estimating ITE and quantifies the uncertainty of the ITE estimation, using a construction that is more robust than other methods. Experiments using synthetic and semi-synthetic datasets (based on real data) demonstrate that R2P constructs partitions that are simultaneously more homogeneous within groups and more heterogeneous across groups than the partitions produced by other methods. Moreover, because R2P can employ any ITE estimator, it also produces much narrower confidence intervals with a prescribed coverage guarantee than other methods.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源