论文标题

用于主动轮廓和图像分割的广义不对称双前模型

A Generalized Asymmetric Dual-front Model for Active Contours and Image Segmentation

论文作者

Chen, Da, Spencer, Jack, Mirebeau, Jean-Marie, Chen, Ke, Shu, Minglei, Cohen, Laurent D.

论文摘要

基于Voronoi图的双前主动轮廓模型被称为解决图像分割和域分配问题的强大而有效的方法。在双前模型的基本公式中,可以将不断发展的轮廓视为相邻的Voronoi区域的接口。在这些双前线模型中,至关重要的要素被认为是地球测量指标,可以估算地球距离和相应的伏诺曲图。在本文中,我们介绍了一种非对称二次指标双前期模型。所考虑的指标是由图像特征的集成和从不断发展的轮廓得出的向量字段构建的。不对称增强的使用可以降低轮廓快捷方式或泄漏问题的风险,尤其是当初始轮廓远离目标边界或图像具有复杂强度分布时。此外,提出的双前模型可以与各种基于区域的同质性项结合使用图像分割。合成图像和真实图像的数值实验表明,所提出的双前模型确实取得了令人鼓舞的结果。

The Voronoi diagram-based dual-front active contour models are known as a powerful and efficient way for addressing the image segmentation and domain partitioning problems. In the basic formulation of the dual-front models, the evolving contours can be considered as the interfaces of adjacent Voronoi regions. Among these dual-front models, a crucial ingredient is regarded as the geodesic metrics by which the geodesic distances and the corresponding Voronoi diagram can be estimated. In this paper, we introduce a type of asymmetric quadratic metrics dual-front model. The metrics considered are built by the integration of the image features and a vector field derived from the evolving contours. The use of the asymmetry enhancement can reduce the risk of contour shortcut or leakage problems especially when the initial contours are far away from the target boundaries or the images have complicated intensity distributions. Moreover, the proposed dual-front model can be applied for image segmentation in conjunction with various region-based homogeneity terms. The numerical experiments on both synthetic and real images show that the proposed dual-front model indeed achieves encouraging results.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源