论文标题

推理提供了一个指标来限制中微子风味转化的动态模型

Inference offers a metric to constrain dynamical models of neutrino flavor transformation

论文作者

Armstrong, Eve, Patwardhan, Amol V., Rrapaj, Ermal, Ardizi, Sina Fallah, Fuller, George M.

论文摘要

紧凑型物体的多理解剂天体物理学呈现出广泛的环境,其中中微子风味转化可能会发生,并且可能对核合成,动力学和检测到的中微子信号很重要。开发在这些不同环境中调查风味演化解决方案空间的有效技术,从而增强和补充现有的复杂计算工具,可以利用该领域的进步。为此,我们继续探索统计数据同化(SDA),以识别中微子风味转化的小规模模型的解决方案。 SDA是一种机器学习(ML)公式,其中假定动态模型生成任何测量数量。具体而言,我们使用SDA的优化公式,其中成本函数通过变异方法极端化。极端识别成本函数的全局最小值的状态空间区域将对应于可能存在模型解决方案的参数制度。我们的示例研究旨在推断两个单能中微子束的风味转化历史相互相互作用,并在物质背景下相互相互作用。我们要求该溶液与检测点时测量的中微子风味通量一致,并且在沿其轨迹的各个位置(例如发射点)以及Mikheyev-Smirnov-Wolfenstein(MSW)的位置的各个位置的风味含量受到约束。我们展示了该过程如何有效地识别解决方案制度并排除解决方案不可行的制度。总体而言,结果是这种“变异退火”方法的诺言,可以有效探究传统数值模拟代码难以访问的一系列基本问题。

The multi-messenger astrophysics of compact objects presents a vast range of environments where neutrino flavor transformation may occur and may be important for nucleosynthesis, dynamics, and a detected neutrino signal. Development of efficient techniques for surveying flavor evolution solution spaces in these diverse environments, which augment and complement existing sophisticated computational tools, could leverage progress in this field. To this end we continue our exploration of statistical data assimilation (SDA) to identify solutions to a small-scale model of neutrino flavor transformation. SDA is a machine learning (ML) formula wherein a dynamical model is assumed to generate any measured quantities. Specifically, we use an optimization formulation of SDA wherein a cost function is extremized via the variational method. Regions of state space in which the extremization identifies the global minimum of the cost function will correspond to parameter regimes in which a model solution can exist. Our example study seeks to infer the flavor transformation histories of two mono-energetic neutrino beams coherently interacting with each other and with a matter background. We require that the solution be consistent with measured neutrino flavor fluxes at the point of detection, and with constraints placed upon the flavor content at various locations along their trajectories, such as the point of emission, and the locations of the Mikheyev-Smirnov-Wolfenstein (MSW) resonances. We show how the procedure efficiently identifies solution regimes and rules out regimes where solutions are infeasible. Overall, results intimate the promise of this "variational annealing" methodology to efficiently probe an array of fundamental questions that traditional numerical simulation codes render difficult to access.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源