论文标题

一团烂摊子:当大矮人和银河系般的星系合并时

A massive mess: When a large dwarf and a Milky Way-like galaxy merge

论文作者

Koppelman, Helmer H., Bos, Roy O. Y., Helmi, Amina

论文摘要

大约100亿年前,银河系与大型卫星Gaia-enceladus合并。为了深入了解其碎片的性质,我们详细分析了Villalobos&Helmi(2008)的模拟套件,该套件包括一个实验,该实验与Gaia数据推出的附近光环恒星的运动学相匹配。我们比较了模拟中恒星颗粒的运动学分布,并研究了轨道角动量,偏心和能量中碎屑的分布,及其与模拟卫星的质量损失历史的关系。我们确认,盖亚·塞拉多斯(Gaia-Ecceladus)可能陷入了30 $^\ circ $倾斜轨道上的倒退。我们发现,尽管我们的首选模拟中有75%的碎片具有较大的偏心率($> 0.8 $),但大约9%的偏心率小于0.6。较早损失的恒星颗粒具有较大的逆行运动,其中一部分的偏心率较低。预计这些恒星源于卫星的郊区,因此具有较低的金属性,因此它们可能与与单独系统相关的碎屑混淆。这些考虑因素似乎适用于假定的红杉星系中的一些恒星。当大量的盘状星系合并时,它留在碎屑后,具有复杂的相空间结构,各种轨道特性以及一系列的化学丰度。从观察上讲,这会导致具有非常不同特性的子结构,这可能会被误解为暗示独立后代。大量恒星样品和量身定制的流体动力模拟的详细化学丰度对于解决此类难题至关重要。

Circa 10 billion years ago the Milky Way merged with a massive satellite, Gaia-Enceladus. To gain insight into the properties of its debris we analyse in detail the suite of simulations from Villalobos & Helmi (2008), which includes an experiment that produces a good match to the kinematics of nearby halo stars inferred from Gaia data. We compare the kinematic distributions of stellar particles in the simulations and study the distribution of debris in orbital angular momentum, eccentricity and energy, and its relation to the mass-loss history of the simulated satellite. We confirm that Gaia-Enceladus probably fell in on a retrograde, 30$^\circ$ inclination orbit. We find that while 75% of the debris in our preferred simulation has large eccentricity ($> 0.8$), roughly 9% has eccentricity smaller than 0.6. Star particles lost early have large retrograde motions, and a subset of these have low eccentricity. Such stars would be expected to have lower metallicities as they stem from the outskirts of the satellite, and hence naively they could be confused with debris associated with a separate system. These considerations seem to apply to some of the stars from the postulated Sequoia galaxy. When a massive discy galaxy merges, it leaves behind debris with a complex phase-space structure, a large range of orbital properties, and a range of chemical abundances. Observationally, this results in substructures with very different properties, which can be misinterpreted as implying independent progeny. Detailed chemical abundances of large samples of stars and tailored hydrodynamical simulations are critical to resolving such conundrums.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源