论文标题

在陈的Biharmonic猜想中,$ \ mathbb r^5 $

On Chen's biharmonic conjecture for hypersurfaces in $\mathbb R^5$

论文作者

Fu, Yu, Hong, Min-Chun, Zhan, Xin

论文摘要

Chen于1991年提出的关于Biharmonic Submanifolds的长期猜想是,{\ IT在欧几里得空间中的任何Biharmonic Submanifold都是最小的}。对于$ \ mathbb r^{n+1} $的高表面$ m^n $,陈的猜想是在1987年左右独立于1987年左右的$ n = 2 $的情况下解决的。 Hasanis和Vlachos在1995年解决了Chen的猜想,以$ n = 3 $的形式进行超表面。但是,Chen将军在Hypersurface $ m^n $上的猜想仍以$ n> 3 $开放。在本文中,我们在$ \ mathbb r^{5} $中质量陈的猜想,$ n = 4 $。

A longstanding conjecture on biharmonic submanifolds, proposed by Chen in 1991, is that {\it any biharmonic submanifold in a Euclidean space is minimal}. In the case of a hypersurface $M^n$ in $\mathbb R^{n+1}$, Chen's conjecture was settled in the case of $n=2$ by Chen and Jiang around 1987 independently. Hasanis and Vlachos in 1995 settled Chen's conjecture for a hypersurface with $n=3$. However, the general Chen's conjecture on a hypersurface $M^n$ remains open for $n> 3$. In this paper, we settle Chen's conjecture for hypersurfaces in $\mathbb R^{5}$ for $n=4$.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源