论文标题

超图平衡分配

Balanced Allocation on Hypergraphs

论文作者

Greenhill, Catherine, Mans, Bernard, Pourmiri, Ali

论文摘要

我们考虑了多种多样的ininto bins,它们将$ m $球随机分配到$ n $ bins中。遵循Godfrey的模型(Soda,2008),我们假设每个球$ t $,$ 1 \ le t \ le m $,都带有HyperGraph $ \ Mathcal {h}^{(t)} = \ {b_1,b_1,b_1,b_2,b_2,\ ldots,\ ldots,b_ {s_t} $,以及$ b \ in \ Mathcal {h}^{(t)} $至少包含一个对数的垃圾箱。给定$ d \ ge 2 $,我们的$ d $ - 选择算法选择一个边缘$ b \ in \ mathcal {h}^{(t)} $,随机均匀,然后从所选的边缘$ b $中选择集合$ d $ d $ d $ d $随机箱。球从$ d $分配给了一个最小载荷的垃圾箱,带有领带会随机打破。我们证明,如果超图$ \ MATHCAL {H}^{(1)},\ ldots,\ Mathcal {h}^{(m)} $满足A \ Emph {balancedness}条件,并具有低\ emph {pair vistibility},然后在分配$ m = umph $ m = plys $ = phys $ = phys $ = phys $ = plys, \ emph {maximum load},最多是$ \ log_d \ log n+o(1)$,具有很高的概率。平衡性条件强制执行,即几乎在$ \ Mathcal {h}^{(t)} $,$ 1 \ le t \ le m $的超钢体中均匀地出现,而这对可见性条件测量了在球分配过程中选择一对垃圾箱的频率。此外,我们为通过配对可见性的一系列超图的平衡分配获得了最大载荷的下限,显示了可见性参数与最大负载的相关性。在Godfrey的模型中,每个球都被迫在随机选择的Hypereedge中探测所有垃圾箱,然后将球分配给一个最小装载的垃圾箱。戈弗雷(Godfrey)表明,如果每个$ \ Mathcal {h}^{(t)} $,$ 1 \ le t \ le m $,则是平衡的,$ m = o(n)$,则最大负载最多是一个,具有很高的可能性。但是,我们应用了$ d $选择范式的功率,并且仅查询每个球$ d $随机垃圾箱的负载信息,同时在最大负载中实现了非常缓慢的增长。

We consider a variation of balls-into-bins which randomly allocates $m$ balls into $n$ bins. Following Godfrey's model (SODA, 2008), we assume that each ball $t$, $1\le t\le m$, comes with a hypergraph $\mathcal{H}^{(t)}=\{B_1,B_2,\ldots,B_{s_t}\}$, and each edge $B\in\mathcal{H}^{(t)}$ contains at least a logarithmic number of bins. Given $d\ge 2$, our $d$-choice algorithm chooses an edge $B\in \mathcal{H}^{(t)}$, uniformly at random, and then chooses a set $D$ of $d$ random bins from the selected edge $B$. The ball is allocated to a least-loaded bin from $D$, with ties are broken randomly. We prove that if the hypergraphs $\mathcal{H}^{(1)},\ldots, \mathcal{H}^{(m)}$ satisfy a \emph{balancedness} condition and have low \emph{pair visibility}, then after allocating $m=Θ(n)$ balls, the maximum number of balls at any bin, called the \emph{maximum load}, is at most $\log_d\log n+O(1)$, with high probability. The balancedness condition enforces that bins appear almost uniformly within the hyperedges of $\mathcal{H}^{(t)}$, $1\le t\le m$, while the pair visibility condition measures how frequently a pair of bins is chosen during the allocation of balls. Moreover, we establish a lower bound for the maximum load attained by the balanced allocation for a sequence of hypergraphs in terms of pair visibility, showing the relevance of the visibility parameter to the maximum load. In Godfrey's model, each ball is forced to probe all bins in a randomly selected hyperedge and the ball is then allocated in a least-loaded bin. Godfrey showed that if each $\mathcal{H}^{(t)}$, $1\le t\le m$, is balanced and $m=O(n)$, then the maximum load is at most one, with high probability. However, we apply the power of $d$ choices paradigm, and only query the load information of $d$ random bins per ball, while achieving very slow growth in the maximum load.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源