论文标题

语义驱动的着色

Semantic-driven Colorization

论文作者

Ho, Man M., Zhang, Lu, Raake, Alexander, Zhou, Jinjia

论文摘要

最近的着色作用隐含地预测了语义信息,同时学习使黑白图像着色。因此,生成的颜色更容易被溢出,语义故障是看不见的。作为人类在着色方面的体验,我们的大脑首先检测并识别照片中的对象,然后想象它们的合理色彩基于我们在现实生活中看到的许多相似物体,并最终对它们进行着色,如预告片中所述。在这项研究中,我们模拟了类似人类的动作,让我们的网络首先学会理解照片,然后对其进行着色。因此,我们的工作可以在语义层面上提供合理的颜色。另外,学习模型的语义信息变得可以理解并能够交互。此外,我们还证明了实例归一化也是差着着色的成分,然后重新设计了U-NET的推理流量以具有两个数据流,这提供了一种适当的方法,可以使来自黑白图像及其语义映射的特征图归一化。结果,我们的网络可以为特定对象提供典型着色的合理色彩。

Recent colorization works implicitly predict the semantic information while learning to colorize black-and-white images. Consequently, the generated color is easier to be overflowed, and the semantic faults are invisible. As a human experience in colorization, our brains first detect and recognize the objects in the photo, then imagine their plausible colors based on many similar objects we have seen in real life, and finally colorize them, as described in the teaser. In this study, we simulate that human-like action to let our network first learn to understand the photo, then colorize it. Thus, our work can provide plausible colors at a semantic level. Plus, the semantic information of the learned model becomes understandable and able to interact. Additionally, we also prove that Instance Normalization is also a missing ingredient for colorization, then re-design the inference flow of U-Net to have two streams of data, providing an appropriate way of normalizing the feature maps from the black-and-white image and its semantic map. As a result, our network can provide plausible colors competitive to the typical colorization works for specific objects.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源