论文标题

卢赞(N)和随机反射

Luzin's (N) and randomness reflection

论文作者

Pauly, Arno, Westrick, Linda, Yu, Liang

论文摘要

We show that a computable function $f:\mathbb R\rightarrow\mathbb R$ has Luzin's property (N) if and only if it reflects $Π^1_1$-randomnes, if and only if it reflects $Δ^1_1(\mathcal O)$-randomness, and if and only if it reflects $\mathcal O$-Kurtz randomness, but reflecting Martin-Löf随机性或弱2随机不足。在这里,如果$ f(x)$是$ r $ -random,则可以反映一个随机性概念$ r $,而$ x $也是$ r $ random。如果众所周知,$ f $具有有限的变化,那么我们显示$ f $具有luzin(n)时,并且仅当它反映feal-2随机性时,并且当且仅当它反映$ \ emptyset的$ - kurtz kurtz随机性时。这将经典的真实分析与算法随机性联系起来。

We show that a computable function $f:\mathbb R\rightarrow\mathbb R$ has Luzin's property (N) if and only if it reflects $Π^1_1$-randomnes, if and only if it reflects $Δ^1_1(\mathcal O)$-randomness, and if and only if it reflects $\mathcal O$-Kurtz randomness, but reflecting Martin-Löf randomness or weak-2-randomness does not suffice. Here a function $f$ is said to reflect a randomness notion $R$ if whenever $f(x)$ is $R$-random, then $x$ is $R$-random as well. If additionally $f$ is known to have bounded variation, then we show $f$ has Luzin's (N) if and only if it reflects weak-2-randomness, and if and only if it reflects $\emptyset'$-Kurtz randomness. This links classical real analysis with algorithmic randomness.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源