论文标题

在基于树的模型中概括为特征选择的增益惩罚

Generalizing Gain Penalization for Feature Selection in Tree-based Models

论文作者

Wundervald, Bruna, Parnell, Andrew, Domijan, Katarina

论文摘要

我们通过基于树的模型中的增益来开发一种新的特征选择方法。首先,我们表明以前的方法没有执行足够的正则化,并且经常表现出优化的样本外部性能,尤其是在存在相关特征时。取而代之的是,我们开发了一种新的收益惩罚思想,该想法为基于树的模型展示了一般的本地全球正则化。新方法可以在选择特定特定的重要性权重时更灵活。我们在模拟和真实数据上验证了我们的方法,并实现了流行的R软件包Ranger的扩展。

We develop a new approach for feature selection via gain penalization in tree-based models. First, we show that previous methods do not perform sufficient regularization and often exhibit sub-optimal out-of-sample performance, especially when correlated features are present. Instead, we develop a new gain penalization idea that exhibits a general local-global regularization for tree-based models. The new method allows for more flexibility in the choice of feature-specific importance weights. We validate our method on both simulated and real data and implement itas an extension of the popular R package ranger.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源