论文标题

触点几何形状中的广义准网歧管

Generalized Quasi-Einstein Manifolds in Contact Geometry

论文作者

Ünal, İnan

论文摘要

在这项研究中,我们研究了正常度量接触对歧管的广义准网状结构。首先,我们处理基本特性,并检查广义准公制接触对歧管的总体化,存在和表征。其次,研究了正常度量接触对歧管的广义准稳定曲率,并证明具有普遍的准准恒定曲率曲率的正常度量接触对歧管是一般的准代因歧管。考虑了满足环状ricci张量和Codazzi类型的Ricci张量的正常度量接触对歧管,并显示出广义的Quasi-Einstein正常度量触点对歧管不满足RICCI Tensor的Codazzi类型。最后,我们处理正常的度量触点对歧管,满足与$ \ Mathcal {M} - $ poffitive,Conformal和Circular Curvature Tensor相关的某些曲率条件。我们表明,具有广义准稳定曲率的普通度量接触对歧管是局部与HOPF歧管$ s^{2n+1}(1)\ times s^1 $的等距。

In this study, we investigate generalized quasi-Einstein structure for normal metric contact pair manifolds. Firstly, we deal with elementary properties and examine, existence, and characterizations of generalized quasi-Einstein normal metric contact pair manifold. Secondly, the generalized quasi-constant curvature of normal metric contact pair manifolds are studied and it is proven that a normal metric contact pair manifold with generalized quasi-constant curvature is a generalized quasi-Einstein manifold. Normal metric contact pair manifolds satisfying cyclic Ricci tensor and the Codazzi type of Ricci tensor are considered and its shown that a generalized quasi-Einstein normal metric contact pair manifold does not satisfy Codazzi type of Ricci tensor. Finally, we work on normal metric contact pair manifolds satisfying certain curvature conditions related to $ \mathcal{M}- $projective, conformal, and concircular curvature tensors. We show that a normal metric contact pair manifold with generalized quasi-constant curvature is locally isometric to the Hopf manifold $ S^{2n+1}(1) \times S^1 $.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源