论文标题

与Banach空间上的非负操作员相关的空间

Besov spaces associated with non-negative operators on Banach spaces

论文作者

Batty, Charles, Chen, Chuang

论文摘要

由运算符的分数能力的各种表示的动机,我们开发了抽象的理论space spaces $ b^{s,a} _ {q,x} $,用于非阴性运算符$ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ a $ x $,带有全范围的indices $ s \ in \ in \ inthbb {r} $ {r} $ 0 <q \ 0 <q \ sftty。我们使用的方法是针对非阴性操作员的分解的二元分解,这是对古典BESOV空间构建中Littlewood-Paley分解的类似物。特别是,通过对BESOV空间的运算符和明确的准标准估算的复制公式,我们讨论了与操作员相关的BESOV空间的平稳性与基础操作员分数幂的界限之间的连接。

Motivated by a variety of representations of fractional powers of operators, we develop the theory of abstract Besov spaces $B^{ s, A }_{ q, X }$ for non-negative operators $A$ on Banach spaces $X$ with a full range of indices $s \in \mathbb{R}$ and $0 < q \leq \infty$. The approach we use is the dyadic decomposition of resolvents for non-negative operators, an analogue of the Littlewood-Paley decomposition in the construction of the classical Besov spaces. In particular, by using the reproducing formulas for fractional powers of operators and explicit quasi-norms estimates for Besov spaces we discuss the connections between the smoothness of Besov spaces associated with operators and the boundedness of fractional powers of the underlying operators.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源