论文标题

sur larépartitionintime de la repredsentation d'ostrowski dan dan les les class derésidue

Sur la répartition jointe de la représentation d'Ostrowski dans les classes de résidue

论文作者

Amri, Myriam, Spiegelhofer, Lukas, Thuswaldner, Jörg

论文摘要

对于两个不同的整数$ m_1,m_2 \ ge2 $,我们设置$α_1= [0; \ edline {1,m_1}] $和$α_2= [0; \ overline {1,m_2}] $,我们用$ s_ {α_1} $和$ s__2}表示naime n aughtlline {1,m_1}] $ and $ s_2} $ s_ {n)naime和$ s_2} ostrowski $α_1$和$α_2-$表示$ n $。令$ b_1,b_2 $为正整数满足$(b_1,m_1)= 1 $和$(b_2,m_2)= 1 $,我们获得了一个错误项$ o(n^{1-Δ})$的估计,用于以下$ \ big \ big \ \ \ \ leq n <n <n < a_1 \ pmod {b_1},\ s_ {α_2}(n)\ equiv a_2 \ pmod {b_2} \ big \},所有整数$ a_1 $ and $ a_2。$ a _1 $ and $ a_2。$ $ $应与Bésineau和kim copeans copire copire and $ q- $ q- $ q- $ q- $ q- $ q- $ q- $ q- $ q- q-进行比较。

For two distinct integers $m_1,m_2\ge2$, we set $α_1=[0;\overline{1,m_1}]$ and $α_2=[0;\overline{1,m_2}]$ and we denote by $S_{α_1}(n)$ and $S_{α_2}(n)$ respectively the sum of digits functions in the Ostrowski $α_1$ and $α_2-$representations of $n$. Let $b_1,b_2 $ be positive integers satisfying $(b_1,m_1)=1$ and $(b_2,m_2)=1$, we obtain an estimation with an error term $O(N^{1-δ})$ for the cardinal of the following set $$\Big\{ 0\leq n<N;\ S_{α_1}(n)\equiv a_1\pmod{b_1},\ S_{α_2}(n)\equiv a_2\pmod{b_2}\Big\},$$ for all integers $a_1$ and $a_2.$ Our result should be compared to that of Bésineau and Kim who treated the case of the $q-$representations in different bases (that are coprimes).

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源