论文标题
将用户的微观行为和项目知识纳入基于会话的建议的多任务学习
Incorporating User Micro-behaviors and Item Knowledge into Multi-task Learning for Session-based Recommendation
论文作者
论文摘要
基于会话的建议(SR)已成为各种电子商务平台的重要组成部分,该平台旨在根据给定的会话预测下一个相互作用的项目。大多数现有的SR模型仅着重于在某个用户相互作用的会话中利用连续项目,以捕获项目之间的过渡模式。尽管其中一些已被证明有效,但通常会忽略以下两个见解。首先,用户的微型行为,例如用户找到一个项目的方式,用户对项目所做的活动(例如,阅读注释,添加到购物车中),对用户的偏好提供了细微的和深刻的了解。其次,项目属性(也称为项目知识)提供了侧面信息,以模拟相互作用的项目之间的过渡模式并减轻数据稀疏问题。这些见解激发了我们在本文中提出一种新颖的SR Model MKM-SR,该文章将用户的微型行为和项目知识纳入了基于会话建议的多任务学习中。具体而言,给定的会话是在MKM-SR中以微观行为级别建模的,即具有一系列项目操作对而不是项目序列,以充分捕获会话中的过渡模式。此外,我们提出了一个多任务学习范式,涉及学习知识嵌入,该知识的嵌入方式是促进SR的主要任务的辅助任务。它使我们的模型能够获得更好的会话表示形式,从而获得更精确的SR建议结果。在两个基准数据集上进行的广泛评估表明,MKM-SR比最先进的SR模型的优越性,证明了合并知识学习的策略是合理的。
Session-based recommendation (SR) has become an important and popular component of various e-commerce platforms, which aims to predict the next interacted item based on a given session. Most of existing SR models only focus on exploiting the consecutive items in a session interacted by a certain user, to capture the transition pattern among the items. Although some of them have been proven effective, the following two insights are often neglected. First, a user's micro-behaviors, such as the manner in which the user locates an item, the activities that the user commits on an item (e.g., reading comments, adding to cart), offer fine-grained and deep understanding of the user's preference. Second, the item attributes, also known as item knowledge, provide side information to model the transition pattern among interacted items and alleviate the data sparsity problem. These insights motivate us to propose a novel SR model MKM-SR in this paper, which incorporates user Micro-behaviors and item Knowledge into Multi-task learning for Session-based Recommendation. Specifically, a given session is modeled on micro-behavior level in MKM-SR, i.e., with a sequence of item-operation pairs rather than a sequence of items, to capture the transition pattern in the session sufficiently. Furthermore, we propose a multi-task learning paradigm to involve learning knowledge embeddings which plays a role as an auxiliary task to promote the major task of SR. It enables our model to obtain better session representations, resulting in more precise SR recommendation results. The extensive evaluations on two benchmark datasets demonstrate MKM-SR's superiority over the state-of-the-art SR models, justifying the strategy of incorporating knowledge learning.