论文标题

从脑电图数据早期诊断癫痫

Towards Early Diagnosis of Epilepsy from EEG Data

论文作者

Lu, Diyuan, Bauer, Sebastian, Neubert, Valentin, Costard, Lara Sophie, Rosenow, Felix, Triesch, Jochen

论文摘要

癫痫是最常见的神经系统疾病之一,在所有年龄段的人群中影响约1%。在发生任何癫痫发作之前,检测癫痫发育,即癫痫发生(EPG),可以进行早期干预和潜在的更有效的治疗。在这里,我们研究现代机器学习(ML)技术是否可以在发生任何癫痫发作之前从颅内脑电图(EEG)录音中检测EPG。为此,我们使用癫痫的啮齿动物模型,其中EPG是由大脑电刺激触发的。我们提出了一个用于EPG识别的ML框架,该框架将深度卷积神经网络(CNN)与预测聚合方法结合在一起,以获得最终的分类决策。具体而言,对神经网络进行了训练,以区分从刺激前或刺激后期获得的五个eeg记录。由于癫痫的逐渐发展,刺激前后的脑电图模式存在巨大的重叠。因此,引入了一个预测聚合过程,该过程在更长的时间内汇总了预测。通过在一小时内汇总预测,我们的方法在EPG检测任务上达到了曲线(AUC)下的一个区域(AUC)。这证明了从脑电图记录中预测EPG的可行性。

Epilepsy is one of the most common neurological disorders, affecting about 1% of the population at all ages. Detecting the development of epilepsy, i.e., epileptogenesis (EPG), before any seizures occur could allow for early interventions and potentially more effective treatments. Here, we investigate if modern machine learning (ML) techniques can detect EPG from intra-cranial electroencephalography (EEG) recordings prior to the occurrence of any seizures. For this we use a rodent model of epilepsy where EPG is triggered by electrical stimulation of the brain. We propose a ML framework for EPG identification, which combines a deep convolutional neural network (CNN) with a prediction aggregation method to obtain the final classification decision. Specifically, the neural network is trained to distinguish five second segments of EEG recordings taken from either the pre-stimulation period or the post-stimulation period. Due to the gradual development of epilepsy, there is enormous overlap of the EEG patterns before and after the stimulation. Hence, a prediction aggregation process is introduced, which pools predictions over a longer period. By aggregating predictions over one hour, our approach achieves an area under the curve (AUC) of 0.99 on the EPG detection task. This demonstrates the feasibility of EPG prediction from EEG recordings.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源