论文标题
破坏Kerr公制
Disforming the Kerr metric
论文作者
论文摘要
从涉及标量头发的高阶标量张量理论的最近构建的Stealth Kerr解决方案开始,我们在分析中构建了Kerr时空的异形版本,具有恒定的失真性和常规标量场。虽然畸形的度量只有一个环奇异性,渐近的度量与Kerr非常相似,但发现它既不是Ricci平坦的也不是圆形的。非圆形对溶液的结构产生了很大的影响。当我们从渐近无穷大的旋转紧凑物体接近旋转的物体时,我们发现具有带有封闭的Ergoregion的静态极限等方面类似于Kerr时空。但是,发现插入观察者的固定限制是平时的超曲面。在此固定极限表面的内部发现了候选事件范围。这是一个不再杀死向量的光射线的无效一致性产生的无效性。在一个轻度的规律性假设下,我们发现候选表面确实是事件范围,因此,差异的Kerr公制是一个与Kerr溶液完全不同的黑洞。
Starting from a recently constructed stealth Kerr solution of higher order scalar tensor theory involving scalar hair, we analytically construct disformal versions of the Kerr spacetime with a constant degree of disformality and a regular scalar field. While the disformed metric has only a ring singularity and asymptotically is quite similar to Kerr, it is found to be neither Ricci flat nor circular. Non-circularity has far reaching consequences on the structure of the solution. As we approach the rotating compact object from asymptotic infinity we find a static limit ergosurface similar to the Kerr spacetime with an enclosed ergoregion. However, the stationary limit of infalling observers is found to be a timelike hypersurface. A candidate event horizon is found in the interior of this stationary limit surface. It is a null hypersurface generated by a null congruence of light rays which are no longer Killing vectors. Under a mild regularity assumption, we find that the candidate surface is indeed an event horizon and the disformed Kerr metric is therefore a black hole quite distinct from the Kerr solution.