论文标题

DSU-NET:密集的SEGU-NET,用于MR图像中的自动头颈肿瘤分割

DSU-net: Dense SegU-net for automatic head-and-neck tumor segmentation in MR images

论文作者

Tang, Pin, Zu, Chen, Hong, Mei, Yan, Rui, Peng, Xingchen, Xiao, Jianghong, Wu, Xi, Zhou, Jiliu, Zhou, Luping, Wang, Yan

论文摘要

在MRI中,最常见的头颈肿瘤,鼻咽癌(NPC)的精确分割阐明了治疗和调节决策。但是,NPC的病变大小和形状,边界歧义以及有限的可用注释的样品将NPC分割在MRI中涉及到具有挑战性的任务的有限变化。在本文中,我们提出了一个密集的SEGU-NET(DSU-NET)框架,用于MRI中的自动NPC分割。我们的贡献是三倍。首先,与使用UPCONCOLUTION的UPSAMLING的U-NET传统解码器不同,我们认为从低分辨率特征到高分辨率输出的恢复应能够保留重要的信息,以确保精确的边界定位。因此,我们使用未解决的方式取消样品并提出Segu-net。其次,为了解决潜在的消失梯度问题,我们引入了密集的块,这可以促进特征传播和重复使用。第三,仅使用交叉熵(CE)作为损失功能可能会带来麻烦,例如错过预测,因此我们建议使用由CE损失和骰子损失组成的损失功能来训练网络。定量和定性比较在内部数据集上进行了广泛的比较,实验结果表明,我们所提出的体系结构的表现优于现有的最新细分网络。

Precise and accurate segmentation of the most common head-and-neck tumor, nasopharyngeal carcinoma (NPC), in MRI sheds light on treatment and regulatory decisions making. However, the large variations in the lesion size and shape of NPC, boundary ambiguity, as well as the limited available annotated samples conspire NPC segmentation in MRI towards a challenging task. In this paper, we propose a Dense SegU-net (DSU-net) framework for automatic NPC segmentation in MRI. Our contribution is threefold. First, different from the traditional decoder in U-net using upconvolution for upsamling, we argue that the restoration from low resolution features to high resolution output should be capable of preserving information significant for precise boundary localization. Hence, we use unpooling to unsample and propose SegU-net. Second, to combat the potential vanishing-gradient problem, we introduce dense blocks which can facilitate feature propagation and reuse. Third, using only cross entropy (CE) as loss function may bring about troubles such as miss-prediction, therefore we propose to use a loss function comprised of both CE loss and Dice loss to train the network. Quantitative and qualitative comparisons are carried out extensively on in-house datasets, the experimental results show that our proposed architecture outperforms the existing state-of-the-art segmentation networks.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源