论文标题

通过随机差分网络学习连续的时间动力学

Learning Continuous-Time Dynamics by Stochastic Differential Networks

论文作者

Liu, Yingru, Xing, Yucheng, Yang, Xuewen, Wang, Xin, Shi, Jing, Jin, Di, Chen, Zhaoyue

论文摘要

学习连续时间随机动力学是建模零星时间序列的一个基本和基本问题,其观察在时间和维度上都是不规则和稀疏的。对于一个给定的系统,其潜在状态和观察到的数据是高维的,通常不可能得出描述系统行为的精确连续时间随机过程。为了解决上述问题,我们采用变分贝叶斯方法,并提出了一个名为变异的随机差异网络(VSDN)的柔性连续时间随机复发性神经网络,该网络嵌入了神经时间序列的复杂动力学,由神经随机微分方程(SDE)。 VSDN捕获了潜在状态之间的随机依赖性和深层神经网络的观察。我们还结合了两个差分证据下限,以有效地训练模型。通过全面的实验,我们表明VSDN的表现优于最先进的连续深度学习模型,并在零星时间序列的预测和插值任务上实现了出色的性能。

Learning continuous-time stochastic dynamics is a fundamental and essential problem in modeling sporadic time series, whose observations are irregular and sparse in both time and dimension. For a given system whose latent states and observed data are high-dimensional, it is generally impossible to derive a precise continuous-time stochastic process to describe the system behaviors. To solve the above problem, we apply Variational Bayesian method and propose a flexible continuous-time stochastic recurrent neural network named Variational Stochastic Differential Networks (VSDN), which embeds the complicated dynamics of the sporadic time series by neural Stochastic Differential Equations (SDE). VSDNs capture the stochastic dependency among latent states and observations by deep neural networks. We also incorporate two differential Evidence Lower Bounds to efficiently train the models. Through comprehensive experiments, we show that VSDNs outperform state-of-the-art continuous-time deep learning models and achieve remarkable performance on prediction and interpolation tasks for sporadic time series.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源