论文标题

Ameir:推荐系统中的自动行为建模,互动探索和MLP调查

AMEIR: Automatic Behavior Modeling, Interaction Exploration and MLP Investigation in the Recommender System

论文作者

Zhao, Pengyu, Xiao, Kecheng, Zhang, Yuanxing, Bian, Kaigui, Yan, Wei

论文摘要

最近,深度学习模型已在工业推荐系统中广泛传播,并提高了建议质量。尽管取得了杰出的成功,但任务吸引推荐系统的设计通常需要域专家的手动功能工程和建筑工程。为了减轻人类的努力,我们探讨了神经体系结构搜索(NAS)的潜力,并在推荐系统中引入了自动行为建模,互动探索和多层感知器(MLP)调查的AMEIR。 Ameir的核心贡献是三阶段的搜索空间和量身定制的三步搜索管道。具体而言,Ameir将完整的建议模型分为行为建模,交互探索,MLP聚合的三个阶段,并引入了一个新的搜索空间,其中包含三个量身定制的子空间,这些子空间涵盖了大多数现有方法,从而允许搜索更好的模型。为了有效,有效地找到理想的体系结构,Ameir在这三个阶段逐渐推荐时就实现了单次随机搜索,并将搜索结果组装为最终结果。进一步的分析表明,Ameir的搜索空间可以涵盖大多数代表性的建议模型,这证明了我们设计的普遍性。在各种情况下进行的广泛实验表明,AMEIR的表现优于精心制作的手动设计的竞争基准,并且领先的算法复杂的NAS方法具有较低的模型复杂性和可比的时间成本,表明所提出的方法的效率,效率和鲁棒性。

Recently, deep learning models have been widely spread in the industrial recommender systems and boosted the recommendation quality. Though having achieved remarkable success, the design of task-aware recommender systems usually requires manual feature engineering and architecture engineering from domain experts. To relieve those human efforts, we explore the potential of neural architecture search (NAS) and introduce AMEIR for Automatic behavior Modeling, interaction Exploration and multi-layer perceptron (MLP) Investigation in the Recommender system. The core contributions of AMEIR are the three-stage search space and the tailored three-step searching pipeline. Specifically, AMEIR divides the complete recommendation models into three stages of behavior modeling, interaction exploration, MLP aggregation, and introduces a novel search space containing three tailored subspaces that cover most of the existing methods and thus allow for searching better models. To find the ideal architecture efficiently and effectively, AMEIR realizes the one-shot random search in recommendation progressively on the three stages and assembles the search results as the final outcome. Further analysis reveals that AMEIR's search space could cover most of the representative recommendation models, which demonstrates the universality of our design. The extensive experiments over various scenarios reveal that AMEIR outperforms competitive baselines of elaborate manual design and leading algorithmic complex NAS methods with lower model complexity and comparable time cost, indicating efficacy, efficiency and robustness of the proposed method.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源