论文标题

使用物理信息的生成对抗网络对弹性模量的逆估计

Inverse Estimation of Elastic Modulus Using Physics-Informed Generative Adversarial Networks

论文作者

Warner, James E., Cuevas, Julian, Bomarito, Geoffrey F., Leser, Patrick E., Leser, William P.

论文摘要

尽管标准生成对抗网络(GAN)仅依靠训练数据来学习未知的概率分布,但物理信息的gan(PI-GAN)以随机偏微分方程(PDE)的形式使用自动差异编码物理定律。通过将观察到的数据与未观察到的量通过PDE相关联,PI-GAN可以估算潜在的概率分布而无需直接测量(即反问题)。 gan的可扩展性质允许推断高维,空间依赖的概率分布(即随机字段),同时通过PDE合并以前的信息允许训练数据集相对较小。 在这项工作中,证明了Pi-Gans用于在机械测试中弹性模量估计的应用。给定测量的变形数据,学习了空间变化的弹性模量(刚度)的潜在概率分布。两个前进的深度神经网络发生器用于对二维结构域的变形和材料刚度进行建模。用梯度罚款的Wasserstein Gans用于增强稳定性。在没有明确的训练数据的情况下,可以证明Pi-GAN学会通过将其与测量的变形相关联的PDE,从而生成对材料刚度的现实,物理上不可能的实现。结果表明,这些生成的刚度样本的统计数据(平均值,标准偏差,点分布,相关长度)与真实分布有很好的一致性。

While standard generative adversarial networks (GANs) rely solely on training data to learn unknown probability distributions, physics-informed GANs (PI-GANs) encode physical laws in the form of stochastic partial differential equations (PDEs) using auto differentiation. By relating observed data to unobserved quantities of interest through PDEs, PI-GANs allow for the estimation of underlying probability distributions without their direct measurement (i.e. inverse problems). The scalable nature of GANs allows high-dimensional, spatially-dependent probability distributions (i.e., random fields) to be inferred, while incorporating prior information through PDEs allows the training datasets to be relatively small. In this work, PI-GANs are demonstrated for the application of elastic modulus estimation in mechanical testing. Given measured deformation data, the underlying probability distribution of spatially-varying elastic modulus (stiffness) is learned. Two feed-forward deep neural network generators are used to model the deformation and material stiffness across a two dimensional domain. Wasserstein GANs with gradient penalty are employed for enhanced stability. In the absence of explicit training data, it is demonstrated that the PI-GAN learns to generate realistic, physically-admissible realizations of material stiffness by incorporating the PDE that relates it to the measured deformation. It is shown that the statistics (mean, standard deviation, point-wise distributions, correlation length) of these generated stiffness samples have good agreement with the true distribution.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源