论文标题

用嘈杂标签的元元过渡改编

Meta Transition Adaptation for Robust Deep Learning with Noisy Labels

论文作者

Shu, Jun, Zhao, Qian, Xu, Zongben, Meng, Deyu

论文摘要

为了发现固有的阶层间过渡概率的基础数据,使用噪声转变的学习已成为对损坏标签进行深入学习的重要方法。先前的方法试图通过预测具有属于特定类别的1概率的强有信心的锚点来实现此类过渡知识,通常在实践中是不可行的,或直接共同估算过渡矩阵并从嘈杂的样本中学习分类器,总是导致不准确的估计误解,尤其是在大的批准信息中,尤其是在大的大噪声案例中误解了估计。为了减轻这些问题,本研究提出了针对该任务的新元转移学习策略。具体而言,通过一小部分带有干净标签的元数据的声音引导,可以将噪声过渡矩阵和分类器参数相互放大,以避免被嘈杂的训练样本捕获,而无需任何锚点假设。此外,我们证明我们的方法具有统计一致性保证,可以正确估计所需的过渡矩阵。广泛的合成和真实实验验证了我们的方法可以更准确地提取过渡矩阵,自然而然地遵循其更强的性能,而不是先前的艺术。还讨论了它与标签分布学习的基本关系,这也解释了即使在无噪声的情况下,它也可以解释其出色的表现。

To discover intrinsic inter-class transition probabilities underlying data, learning with noise transition has become an important approach for robust deep learning on corrupted labels. Prior methods attempt to achieve such transition knowledge by pre-assuming strongly confident anchor points with 1-probability belonging to a specific class, generally infeasible in practice, or directly jointly estimating the transition matrix and learning the classifier from the noisy samples, always leading to inaccurate estimation misguided by wrong annotation information especially in large noise cases. To alleviate these issues, this study proposes a new meta-transition-learning strategy for the task. Specifically, through the sound guidance of a small set of meta data with clean labels, the noise transition matrix and the classifier parameters can be mutually ameliorated to avoid being trapped by noisy training samples, and without need of any anchor point assumptions. Besides, we prove our method is with statistical consistency guarantee on correctly estimating the desired transition matrix. Extensive synthetic and real experiments validate that our method can more accurately extract the transition matrix, naturally following its more robust performance than prior arts. Its essential relationship with label distribution learning is also discussed, which explains its fine performance even under no-noise scenarios.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源