论文标题

特殊的仿射小波变换和相应的泊松求和公式

Special Affine Wavelet Transforms and the Corresponding Poisson Summation Formula

论文作者

Shah, Firdous A., Tantary, Azhar Y., Teali, Aajaz A.

论文摘要

特殊的仿射傅立叶变换(SAFT)是一种有前途的工具,用于分析具有更高自由度的非平稳信号。但是,SAFT由于其全局内核而无法获得非频率信号的局部特征,从而使SAFT在要求时间和频率的联合信息的情况下变得无能。为了避免这种限制,我们提出了一个高度灵活的时频变换,即特殊的仿射小波变换(SAWT),并研究关节时频域中相关的常数$ q $ - property。提出的转换的基本属性,例如瑞利定理,反转公式和范围的表征,使用特殊仿射傅立叶变换和操作者理论的机制讨论了该范围。除此之外,还讨论了SAWT的离散对应物,并获得了相应的重建公式。此外,我们还可以在众所周知的特殊仿射器分布与所提出的转换之间建立直接关系。接下来是引入一种与特殊仿射傅里叶变换相关的新型波数据包变换。在最后,得出了泊松求和公式的类似于提议的特殊仿射小波变换。

The special affine Fourier transform (SAFT) is a promising tool for analyzing non-stationary signals with more degrees of freedom. However, the SAFT fails in obtaining the local features of non-transient signals due to its global kernel and thereby make SAFT incompetent in situations demanding joint information of time and frequency. To circumvent this limitation, we propose a highly flexible time-frequency transform namely, the special affine wavelet transform (SAWT) and investigate the associated constant $Q$-property in the joint time-frequency domain. The basic properties of the proposed transform such as Rayleigh's theorem, inversion formula and characterization of the range are discussed using the machinery of special affine Fourier transforms and operator theory. Besides this, the discrete counterpart of SAWT is also discussed and the corresponding reconstruction formula is obtained. Moreover, we also drive a direct relationship between the well known special affine Wigner distribution and the proposed transform. This is followed by introducing a new kind of wave packet transform associated with the special affine Fourier transform. Towards the end, an analogue of the Poisson summation formula for the proposed special affine wavelet transform is derived.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源