论文标题
监督促进稀疏的正规化器的学习
Supervised Learning of Sparsity-Promoting Regularizers for Denoising
论文作者
论文摘要
我们提出了一种监督学习稀疏性促进正则化的方法,以进行图像降级。促进稀疏性正则化是解决现代形象重建问题的关键要素。但是,这些正规化器的基础操作员通常是手工设计的,要么以无监督的方式从数据中学到。在解决图像重建问题方面,监督学习(主要是卷积神经网络)的最新成功表明,这可能是设计正规化器的富有成果的方法。作为在这个方向上的第一个实验,我们建议使用具有参数性的,刺激性的正规化程序的变异公式来降低图像,其中学会了正常器的参数,以最大程度地减少在训练集(地面真实图像,测量)对上的训练集上重建的平均平方误差。培训涉及解决具有挑战性的双层优化问题;我们使用Karush-kuhn-tucker条件得出了训练损失梯度的表达,并提供随附的梯度下降算法以最大程度地减少其。我们对一个简单合成,脱氧问题的实验表明,所提出的方法可以学习一个超过众所周知的正规化器(总变化,DCT-SPARSITY和无监督的字典学习)和协作过滤的操作员。尽管我们提出的方法是特定于denoing的,但我们认为它可以通过线性测量模型来适应整个类别的反问题,使其适用于广泛的图像重建问题。
We present a method for supervised learning of sparsity-promoting regularizers for image denoising. Sparsity-promoting regularization is a key ingredient in solving modern image reconstruction problems; however, the operators underlying these regularizers are usually either designed by hand or learned from data in an unsupervised way. The recent success of supervised learning (mainly convolutional neural networks) in solving image reconstruction problems suggests that it could be a fruitful approach to designing regularizers. As a first experiment in this direction, we propose to denoise images using a variational formulation with a parametric, sparsity-promoting regularizer, where the parameters of the regularizer are learned to minimize the mean squared error of reconstructions on a training set of (ground truth image, measurement) pairs. Training involves solving a challenging bilievel optimization problem; we derive an expression for the gradient of the training loss using Karush-Kuhn-Tucker conditions and provide an accompanying gradient descent algorithm to minimize it. Our experiments on a simple synthetic, denoising problem show that the proposed method can learn an operator that outperforms well-known regularizers (total variation, DCT-sparsity, and unsupervised dictionary learning) and collaborative filtering. While the approach we present is specific to denoising, we believe that it can be adapted to the whole class of inverse problems with linear measurement models, giving it applicability to a wide range of image reconstruction problems.