论文标题

基于跨熵的重要性抽样,降低了稀有事件模拟的衰竭尺寸

Cross-entropy-based importance sampling with failure-informed dimension reduction for rare event simulation

论文作者

Uribe, Felipe, Papaioannou, Iason, Marzouk, Youssef M., Straub, Daniel

论文摘要

在许多科学和技术领域,对高维度中罕见事件或失败概率的估计引起了人们的关注。我们考虑以计算昂贵的数值模型表示罕见事件的问题。使用跨凝结方法进行的重要性抽样提供了一种有效的方法来解决此类问题,只要采用合适的偏置密度族。尽管某些现有的参数分布家族旨在在高维度上有效地执行,但它们在跨膜片方法中的适用性仅限于O(1E2)尺寸的问题。在这项工作中,我们专注于确定罕见事件仿真问题的内在低维结构,而不是直接在高维度中构建采样密度。为此,我们利用了罕见事件模拟与贝叶斯反问题之间的联系。这使我们能够从贝叶斯推理中调整缩小尺寸的技术,从而在跨熵方法中构建新的,有效的低维偏分布。特别是,我们在[47]中采用了该方法,因为它可以控制最佳偏分布近似中的误差。我们使用两个标准的高维可靠性基准问题和一种涉及随机字段的结构力学应用来说明我们的方法。

The estimation of rare event or failure probabilities in high dimensions is of interest in many areas of science and technology. We consider problems where the rare event is expressed in terms of a computationally costly numerical model. Importance sampling with the cross-entropy method offers an efficient way to address such problems provided that a suitable parametric family of biasing densities is employed. Although some existing parametric distribution families are designed to perform efficiently in high dimensions, their applicability within the cross-entropy method is limited to problems with dimension of O(1e2). In this work, rather than directly building sampling densities in high dimensions, we focus on identifying the intrinsic low-dimensional structure of the rare event simulation problem. To this end, we exploit a connection between rare event simulation and Bayesian inverse problems. This allows us to adapt dimension reduction techniques from Bayesian inference to construct new, effectively low-dimensional, biasing distributions within the cross-entropy method. In particular, we employ the approach in [47], as it enables control of the error in the approximation of the optimal biasing distribution. We illustrate our method using two standard high-dimensional reliability benchmark problems and one structural mechanics application involving random fields.

扫码加入交流群

加入微信交流群

微信交流群二维码

扫码加入学术交流群,获取更多资源